As one of some transient sequences for the thermofluid safety in ITER, pressure rise and boiling heat transfer characteristics in a Tokamak vacuum vessel during an ingress of coolant event (ICE) are being investigated experimentally by using the preliminary ICE apparatus. The pressure rise rates in the vacuum vessel and the wall temperature distributions on the target plate were measured quantitatively and clarified at first. In addition, a two-phase flow under the ICE conditions was analyzed numerically for predicting the experimental results using one-dimensional transport equations and the drift-flux model. The experimental results were compared with the numerical results. It was found that the pressurization behavior during the ICE conditions could be estimated qualitatively by the present numerical analyses.