High harmonic fast waves (HHFW) have been chosen as the primary method to drive steady state currents in the National Spherical Torus Experiment (NSTX). The somewhat limited experience with this frequency range in conventional tokamak plasma indicates that the coupling to electrons should be successful; however, there is no experimental data base for HHFWs in the unique and rapidly varying plasma regimes expected for NSTX. In this paper, we describe how the HHFW antenna was designed for NSTX using the computer codes to help make decisions that might affect the system's performance and operation. The antenna geometry has been optimized to maintain the power handling and phase control requirements within engineering constraints. The physics issues that lead to the choice of poloidal current strap orientation are discussed. Expectations for current profile control using the antenna's phase control system are also discussed.