D-T fusion in a DRACON with one hot (D or T) ion component is considered. It is supposed that the power from external source (neutral beam injection or ICRF heating) is deposited to hot ions near the center of DRACON mirror part. Because the energy deposition is anisotropic in the velocity space, the anisotropy of hot ions is substantial both for neutron source and reactor plasmas. This results in the following:

hot ions arc trapped mainly in the DRACON mirror part where good confinement can be expected. Therefore, the main channel of hot component energy loss is Coulomb collisions with the cold background plasma.

the pressure of hot ions substantially drops in the CRELs (stellarator parts of DRACON). The contribution of hot ions to Phirsh-Schluter current falls what facilitate the satisfaction of the beta-limit condition.

fusion output is localized in the DRACON mirror parts where confining magnetic field is not so high and more space for fusion energy utilizing devices is available. Reduced neutron flux in CRELs facilitates the solution of many technical problems there. In addition, localization of neutron flux leads to substantial reduction of external power required for the DRACON fusion neutron source.

The scenarios for the DRACON neutron source as well as for the DRACON fusion reactor arc analyzed. The usage of hot ion distribution anisotropy effects, which arc strong for neutron source schemes and not so strong but sufficient for the fusion reactor one, results in that the scenarios have obvious advantages in comparison with analogous ones based on other confinement devices.