The Upper Visible Infrared Wide Angle Viewing System (UWAVS) is a diagnostic used in five upper ports of ITER. Each UWAVS provides visible and infrared views of various sections of the divertor. A single UWAVS is designed in three main sections: in-vessel, interspace and port cell assemblies. Each assembly utilizes multiple steering and relay mirrors to direct the in-vessel light out of the tokamak to the port cell camera sensors.

For the in-vessel components, the transient electro-magnetic (EM) environment resulting from the ITER magnet operation and plasma events induces design driving Lorentz forces. As such, all in-vessel systems require detailed electro-magnetic finite element analysis (FEA) to derive the resulting time dependent Lorentz loads.

ANSYS Maxwell software was used to perform transient electro-magnetic simulations of the UWAVS in ITER upper port 14. A 20 degree sector, cyclic symmetric model was employed and included, inner and outer vacuum vessel, blanket shield modules, diagnostic fist wall (DFW) and shield module (DSM), upper port plug structure, DSM shield blocks, and a detailed model of the UWAVS in-vessel assembly.

The resulting data includes eddy current density and vector plots along with force and moment summation for various UWAVS components. Front end optical components are specifically reported as these components have significant EM loads.