If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 350 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid (Flibe, Li2BeF4) so that the chamber and other apparatus can not only stand up to these 350 MJ bursts of energy but do so without replacing components during the plant's 30-year life. The capacity factor will be increased and the cost of component replacement will be decreased. Continuous improvements to the design are being made to increase safety, decrease the generation of radioactive material, and reduce the cost of electricity (COE). Improvements discussed in this paper decreased COE for each effect by the amount in parentheses: increased plant size (22%), increased capacity factor and reduced component replacement (20%), reduced remote maintenance equipment (3.2%), use of non-nuclear grade chamber, pumps and piping (2.9%), reduced tritium inventory by a factor of 2.4, reduced excess tritium production with attendant increase energy release in the blanket (1.8%), corrected treatment of Flibe inventory costs (3.4%).