We have studied four methods to inject IFE targets: the gas gun, electrostatic accelerator, induction accelerator, and rail gun. We recommend a gas gun for indirect drive targets because they can support a gas pressure load on one end and can slide along the gun barrel without damage; for other types of targets, a sabot would be necessary. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. We recommend a cam and poppet valve arrangement for gas flow control and barrel venting to improve accuracy and gas pumping. An electrostatic accelerator is attractive for use with lightweight spherical direct drive targets. Since there is no physical contact between the target and the injector, there will be no wear of either component during the injection process. An induction accelerator has an advantage of no electrical contact between the target and the injector. Physical contact is not even necessary, so the wear should be minimal. It requires a cylindrical conductive target sleeve which is a substantial added mass. A rail gun is a simpler device than an electrostatic accelerator or induction accelerator. We recommend an externally applied magnetic field to reduce required current by an order of magnitude. A railgun requires electrical contact between the target and the rails and may have a significant wear rate. The wear in a vacuum could be reduced by use of a solid lubricant such as MoS2. The total required accuracy of target injection, tracking and beam pointing of ±0.4 mm appears achievable but will require development and experimental verification.