A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented, A low aspect ratio (A=2–4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m2) allows a permanent first wall to be designed and the low nuclear decay heat enables the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.