A water-cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. The main features are the following: a) a multilayer concept which reduces fabrication cost; b) a simple blanket configuration which results in reliability advantages; c) a very small breeder volume is employed to reduce the tritium inventory and the blanket cost; d) a high tritium breeding ratio eliminates the need for an outside tritium supply; e) a low-pressure system decreases the required steel fraction for structural purposes; f) a low-temperature operation reduces the swelling concerns for beryllium; and g) the small fractions of structure and breeder materials used in the blanket reduce the decay heat source. It is assumed that the blanket operation at commercial power reactor conditions can be sacrificed to achieve a high tritium breeding ratio with minimum additional research and development, and minimal impact on reactor design and operation. Operating temperature limits are enforced for each material to insure a satisfactory blanket performance. In fact, the design was iterated to maximize the tritium breeding ratio and satisfy these temperature limits. The other design constraint is to permit a large increase in the neutron wall loading without exceeding the temperature limits for the different blanket materials. The blanket concept contains 1.8 cm of Li2O and 22.5 cm of beryllium both with a 0.8 density factor. The water coolant is isolated from the breeder material by several zones which reduces the tritium buildup in the water by permeation, reduces the chance for water-breeder interaction, and permits the breeder to operate at high temperature with a low temperature coolant. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. The key features and design analyses of this blanket are summarized in this paper.a Work supported by the U.S. Department of Energy, Office of Fusion Energy.