A tritium plant for nuclear fusion power plants consists of an SDS (Storage and Delivery System), an ISS (Hydrogen Isotope Separation System), a TEP (Tokamak Exhaust Processing system), and an ANS (tritium plant Analytical System). Korea has been developing an SDS. The main purpose of this tritium storage and delivery system is to store and supply the D-T gas needed for DT plasma operation and to provide the necessary infrastructure for short- and long-term storage of large amounts of tritium. We have been developing tritium storage beds for the SDS.

The primary role of the metal hydride beds in the SDS is to store and supply D-T fuel during DT plasma operation. ZrCo and depleted uranium (DU) have been extensively studied. Compared to the use of ZrCo, which is disproportionate at temperatures of higher than 350°C, DU hydride can be heated up to very high temperatures sufficient to pump hydrogen isotopes without using gas compressors. Our experimental apparatus used to test the experimental DU bed consists of a tank that stores and measures the hydrogen, and a DU bed used for the hydriding/dehydriding of hydrogen. Our DU bed is a horizontal double-cylinder type with sintered metal filters. The bed is composed of primary and secondary vessels. The primary vessel contains a DU, and a vacuum layer is formed between the primary and secondary vessels. In this study, we present our recent experimental results on the direct delivery of hydrogen isotopes from a DU hydride bed. We also present the effect of the initial bed temperature and impurity gas on the hydriding rates.