An experiment is described that incorporates the use of separate magnetized plasma guns for formation and sustainment of a spheromak. It is shown that energy coupling efficiency approaches unity if the gun and spheromak are of comparable size. A large gun should be able to operate at lower current and therefore lower voltage. In addition, it is expected that a gun matched to the size of the spheromak will cause less perturbation to the equilibrium. It is proposed to use a smaller gun for spheromak formation and a large, efficient gun for sustainment. The theoretical basis for the experiment is developed, and the details of the experiment are described. A prediction of the equilibrium magnetic flux surfaces using the EFIT code is presented.