A multi-institutional study was conducted to evaluate the potential of heavy-ion induction Linacs as inertial confinement fusion (ICF) drivers. This Heavy-Ion Fusion Systems Assessment (HIFSA) study was a U.S. effort to evaluate a wide range of possible system configurations for electric power plants driven by induction Linacs, as opposed to the radio-frequency accelerators used in previous heavy-ion fusion (HIF) power plant conceptual designs. In contrast to these earlier studies, the HIFSA project specifically avoided concentrating on a point design. Rather, cost/performance models of the major systems in an HIF power plant were devised by the institutions with expertise in the applicable technologies (e.g., Lawrence Berkeley Laboratory for induction accelerators and beam transport/focus; McDonnell Douglas Astronautics Company for cost scaling and systems modeling/integration). (Detailed descriptions of these systems and associated integration/trade-off studies appear in other papers in this special issue.) Some of the key results of the HIFSA study are summarized and their significance assessed. The cardinal conclusions of the study are twofold: (a) Conceptual HIF power plants have estimated cost-of-electricity (COE) values that, at 1 GW(electric), are roughly comparable to those from other ICF and magnetic fusion system studies; and (b) HIF technology is robust in that there exists a large parameter space region in which the COE is close to the minimum; i.e., the minima in COE are broad.