A hybrid blanket for a reversed-field pinch (RFP) reactor is presented for breeding 233U from thorium. This study focuses on the shell/blanket design and assumes a plasma like that used by Culham Laboratory (CL) in its designs. The 233U bred helps the important neutron economy and allows the tritium breeding ratio to be 0.96 at beginning of life for a mean of 1.06 for a 9 MW·yr/m2 burnup. A thick conducting shell is assumed for discharge stability and field reversal. This need for a good conductor requires that only pure copper or aluminum or alloys thereof be used. Two designs were investigated, one with a pure copper first wall/shell, the other with an aluminum alloy. In these designs 3.4% of the thorium is converted to 233U. This corresponds to 18.3 tonnes U in both cases for average thermal powers of 4590 and 4450 MW, respectively, at a wall loading of 2.2 MW/m2 during the burn phase. The breeding rates of 233U are, respectively, 0.66 and 0.69 kg/MW·yr, representing ratios of fission events per bred atom of 0.26 and 0.22, which is naturally better than in the fast breeder. In both designs the low metallurgie temperature limit means the large amount of power deposited on and in the shell is not attractive thermodynamically. The resulting large temperature differences in the shell cause high mechanical stresses. The design as it stands is not feasible from the point of view of radiation damage to materials. The pure metal copper shell swells too much (life limit 1.3 to 2 MW·yr/m2), the transmutations limit the electrical life to 3 MW·yr/m2, and low alloys of copper have not yet been irradiated tofluences sufficient for consideration. The aluminum alloy becomes brittle. This and low cycle fatigue each limit the life to 4.5 MW·yr/m2. Further thoughts at CL show that the RFP should work with a thinner shell as well; this would considerably reduce the thermal stresses in the shell and increase its lifetime sufficiently.