KrF laser intrinsic efficiency increases modestly with increase in losing medium temperature up to at least a few hundred degrees Celsius. Such temperatures are high enough to permit efficient generation of electric power from the large amounts of heat that must be continuously removed from the losing medium of a repetitively pulsed KrF laser in an inertial confinement fusion power plant. The effects of power generation from losing medium heat on netplant efficiency and effective laser efficiency were investigated in a generic systems analysis. Two approaches to efficient, cost-effective generation of electric power from losing medium heat were analyzed in detail: (a) dedicated power generation systems that use losing medium heat as the sole thermal energy source and (b) the use of lasing medium thermal energy to heat main-plant steam cycle feedwater. Feedwater heating gives higher generation efficiencies and is more cost-effective than a dedicated system. Electric power generated from lasing medium heat typically increases power plant efficiency by 2 to 3% absolute and the effective KrF laser efficiency by 2 to 3% absolute. Electric power from losing medium can be used to reduce the fusion power required for a fixed netplant electric power typically by 4 to 5%.