In this paper, we report the progress we have made in fabrication of high-strength thin-walled glow discharge polymer (GDP) shells for cryogenic experiments at OMEGA. We have investigated a number of different parameters involved in making such shells. Optimization of hydrogen to hydrocarbon precursor flow has been observed to be critical in obtaining strong shells. We can routinely make high-strength shells of OMEGA size (900 μm in diameter) with thicknesses in the range of 1.0 to 1.5 μm. The permeabilities of these shells to various gases have been found to be as much as three times higher than those of lower strength shells. Run to run variability and other batch statistics will be discussed.