The radial profile of the neutron production rate in spherical inertial electrostatic confinement (SIEC) plasmas is numerically investigated for various device parameters, i.e., grid cathode current, grid voltage, etc. The electrostatic potential is obtained by solving the Poisson equation; and using the potential, the fuel-ion velocity distribution function is determined at each radial point. From the space-dependent velocity distribution function, the radial profile of the neutron production rate is evaluated. The influence of the broadness of the electron angular momentum distribution on the radial profile of the neutron production rate is also examined. It is shown that the height of the peak of the neutron production rate and its radial position are strongly influenced by the device parameters and the electron distribution.