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rent is given by —D(d<f)/dr), Tait's equations give 

l /a d>\ 1 

Note that diffusion theory and P-1 give the same condition 
on the current; cf. Eqs. (5) and (3). Using Eq. (5), Eq. (6) 
becomes 

(5) 

(6) 

<t>(n) — <t>(r2) 

7T |^Sin ( j t ) ^ r2 \ ^ _ 

Equating Eqs. (7) and (4) and solving the resulting expres-
sion for the void diffusion coefficient gives 

D/n = 
In (r2/ri) 

2{1 - (2/tt) [sin'1 (n/r2) + (n/r2)V 1 - (n/r2)2]} ' 

Therefore, by using the above expression for the void 
diffusion coefficient in diffusion theory calculations the 
P-1 boundary conditions for an annular void region are 
preserved. Note that D is purely a function of geometry 
and hence group independent. For (ri/r2) « 1, Eq. (8) 
becomes 

In (r2/n) 
D / n = 

2[1 - (4/TT) (n/r2)] 
(9) 

:<Mn) + Di(dcf>/dr)i 

1 
= -<fi(rd + D< 

L m -
1 -

(10) 

(11) 

Following the same procedure as in the cylindrical case 
gives 

o _ 
(12) 

for the void diffusion coefficient. Again the above value of 
D in a diffusion theory calculation preserves the conditions 
expressed by Eqs. (10) and (11). 

As is well known, a void region in plane geometry can 
simply be neglected since the void does not contribute to 
the optical thickness. However, it is interesting to consider 

T A B L E I 

V A L U E S OF D/I\ 

riM 
D/n 

Cylinder Sphere 

0.99 4.2427 1.7811 
0.9 1.4089 0.60373 
0.8 1.0719 0.46296 
0.7 0.94799 0.41185 
0.6 0.89696 0.39063 
0.5 0.88637 0.38490 
0.4 0.90788 0.38967 

(7) 
the plane case in light of the above formulation. For the 
plane case, the equation corresponding to Eq. (4) is given 
by 

<t>(x 1) - <j>(x2) 
A / d A , 

- D 
x2). (13) 

To find the value of D for the plane case, we make the 
substitution r2 = (n + t) in Eq. (12) for t « n , r2 and 
consider ri —> 00 ; this gives 

(8) D = (ri3/2501/2, (14) 

and hence (D/ri) = fin (r2/ri) as (ri/r2) —> 0. Table I 
gives values of (D/ri) as a function of the ratio (ri/r2). 
It should be noted that the above treatment is also valid 
for 2a = 0. 

An analogous expression for the void diffusion coefficient 
for a spherical annular region can similarly be derived. 
Extending the material as given by Davison (2), the annular 
void boundary conditions for the spherical case are 

hardly a surprising result since as n —> 00 the spherical 
case approaches the plane case with a void region of thick-
ness t and hence the right hand side of Eq. (13) vanishes 
giving the expected result that <j>(x 1) = <£(z2). 

It should be emphasized that for the cylindrical and slab 
cases, the treatment is restricted to infinite cylinders and 
infinite planes; i.e., no end leakage. The end leakage is a 
separate problem. 
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On the Influence of Pressure on Boiling Water 

Reactor Dynamic Behavior at Atmospheric 

Pressure 
Due to the present importance of understanding reactor 

kinetics, it is essential to be as rigorous as possible in the 
mathematical modeling of reactor problems. Regrettably, 
such has not been the case in most analyses in this field. 
On the other hand very great care has been taken with the 
analysis of the hydrodynamic fields. Overwhelming mathe-
matical detail has been introduced, with the result that 
integration can be done only on a computer. However, the 
basic equation of reactor kinetics has been modeled in-
correctly. 
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To point up the practical aspects and consequences of 
this deficiency, it will be shown that pressure oscillations in 
a reactor can arise in a way which would not be found in the 
analysis, complete though it is, done by Fleck (1). In his 
paper, he assumed the reactor kinetic equation (Eq. 26) 
with the last term on the right in brackets omitted 

d4 _ / Alex -
dt \ I ) (i) 

As in ref. 1, let 

ain 0 
d / a v 

KEX — 

d[a 
dt } 

/av = /o + / exp [(7 + i<a) (t - 0̂)] 

and that 

= 0 
I <t> 

Equations (2)-(5) are now substituted in Eq. (1) to give 

dln<t> af exp [(7 + iu)(t — /0)1 

(6) 
dt I 

As explained in ref. S, the expression 

»X, C',1 

* i 

d\n<f> a , , 9lnd> 
Ojav t OJ av t=t0 

(8) 

Now, substitute (8) and the value of dfav/dt from (4) 
in (6), and it is found that, if din<£/d/av | t=t0 is small, 
then 

The rigorous necessity for terms of this kind has pre-
viously been demonstrated (£). A careful analysis of the 
basis of the usual reactor kinetics equation shows that it 
is valid if and only if the composition (including the exact 
position of all parts) of the reactor does not change with 
time. A detailed and careful derivation of the revised reac-
tor kinetic equation in terms of reactor cross sections, 
including physical interpretation of the added terms, has 
been given in an unpublished report (3). For convenience, 
the last term in (1) can be rewritten in terms of /av directly 
as: 

(ln0) = -y-exp [(7 + ico)(t - to)} 
dt I 

•[! + (<- m y + to)] + (t - to) | E Xi C.-/0] 
( 9 ) 

The last term on the right is small in certain circumstances 
so that Eq. (9) may be integrated. The conditions are found 
from the following simultaneous equations: The first equa-
tion is the expansion of the derivative. The second equation 
is the standard expression for the rate of change of C% . 

dl |_ <)> J 02 

(2) 

(3) 

d(k _ fku 
dt ~ ~X<C<+ I 

(10) 

(11) 

Equation (10) becomes the following upon substitution 
of Eq. (11): 

-dt\ 
In order to investigate the possibility of oscillations in 

(1), we make the standard assumption that /av may be 
split into a constant term and a periodic term: 

L * J i L to ^ v 

(flnAI 
dt )} 

(12) 

For the product (t — t0)d/dt[J^i \iCi/<f>] to be small, it 
is sufficient that the following is true: 

( 4 ) (t - to)\ [a* (3 Ci + dlii(f> 
dt ^ 0 (13) 

Z x< Ci/4> I = E Xi Ci/4> I + (t - to) J E ^ Ci/4>] i t i t=t0 dt i 

We now assume that the reactor is operating near the 
steady state point so that 

( 5 ) 

kex ft 
I 

in Eq. (1) must be considered the partial of In<f> with re-
spect to time, provided (kex — 13)/I is large compared to 
]C» X;C{/<£. It follows from the rules of partial differentia-
tion (4) that if In<f>, a function of the dependent variable, 
/av , and the independent variable, t, is continuous with 
continuous first and second partial derivatives then: nuous nisi ana seconu paniai uerivauves men: r- , 

i t e l , J _ M = peX - pi = Y - ^ + ^ ( " T ) e> dt[_dfavj a/av[_ dt J a/avL 1 J 1 
d 

This equation may be integrated to obtain 

The first two terms on the left, near the steady state 
operation of the reactor, cancel each other out (because 
Eq. (11) is small) so that the term of largest value is the 
third. 

We compare the third term with the sum of all terms on 
the right of Eq. (9) in order to determine the conditions 
under which it is a good approximation to neglect it: 

(-(t - h)Ci\i/ct>){d\n4>/dt) _ (t - to)Cj\i 
d\n<j)/dt </> 

This ratio is small only when (t — to) is small. If a long time 
were involved, the third term may become large and thereby 
tend to counteract a positive rate of change of In<j>. As a 
result, it is found that Eq. (9) may be integrated neglecting 
the third term only if (t — to) is small compared to <f>/Ci\i , 
and if (kex — (3)/I is large compared to îCi/<f>. 

It is appropriate to digress for a moment and return to 
Eq. (9) to make a second comparison. This digression is to 
show the relative influence of the term which comes from 
the proper form of Eq. (1) in Eq. (9). The terms which are 
to be compared for this purpose are the last term in Eq. 
(13) and the second term in Eq. (9) (which comes from the 
proper form of Eq. (1)). The ratio of these two terms is: 

(t - to)Cj\dln(l> 
<t> dt 

(t - to) (7 + i«) 1 I exp [(7 + io>)(t - to)} 

Ci\i 
~<t>( y + ioj) 
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From this ratio it is seen that if (y2 + o>2)1/2 is large compared 
to Ci\i/<f>, then in Eq. (9) the second term is large compared 
to the third term. It is concluded from this ratio that, in 
any reactor transient experiment, the time-dependent 
portions of the average void fraction must be measured in 
such a way so as to determine the value of both the e-fold-
ing coefficient, y, and co, the angular frequency, to the same 
precision as Ci\i/<f>. 

Returning now to the integration of Eq. (9) we may 
neglect the third term on the right, subject to the restric-
tions found, i.e., for small time of departure from the steady 
state, and integrate the remaining terms to find 

<t> = 4>o exp | e x p [(T _ jQ)]j (14) 

If Eq. (6) were integrated without the second or extra 
term, then would be given as follows: 

« f / 7 - i w \ ] 
cf> = 00 exp —J ( ^ j (exp l(y + icc)(t - to)\ - 1) (15) 

The comparison of Eqs. (14) and (15), and the com-
parison of the form of Eq. (9) with and without the term 
(t — t0)(y + ioi) in the large bracket shows that Eq. (14) 
predicts a much more rapid change of power than does Eq. 
(13) as soon as the time, (t — to) becomes greater than 
(72 _J_ w2)-l/2. 

Equation (14) shows that either divergent or convergent 
oscillations are possible, although Fleck claimed divergent 
oscillations would not occur. To determine the exact 
coupling between /av and 4> for any reactor requires a more 
complete study than the present, such as that done by 
Fleck (1). Even without such a complete study, the follow-
ing conclusions can be noted from Eq. (14). 

1. If a is positive, the powrer oscillations are damped 
(no matter what the value of 7). 

2. If a is negative, the power oscillations grow and 
reactor runaway may occur. In such a case (which would 
correspond to voids in an overmoderated region of a re-
actor), the oscillations grow until the growth is stopped 
due to a reversing its sign and becoming positive. For a to 
do this may require the expulsion of moderator (all other 
properties assumed unchanged). 

3. If the term (2) were not introduced in (1), then there 
would be a much smaller feedback in Eq. (1) as shown in 
both Eqs. (9) and (14). 

4. The most important conclusion is that the standard 
reactor kinetic equation (1) for the reactor flux which does 

not contain the rate of change terms (as explained in ref. 
2) can give false results and conclusions based on it are not 
to be trusted. This conclusion must be considered valid for 
reactors of all types unless the extra terms are proved by 
both theory and experiment to be negligible. 

LIST OF SYMBOLS 
a,i = fraction of all delayed neutrons which belong to the 

ith group of delayed neutrons 
Ci = number density of neutron precursors of the ith 

group 
V = void volume averaged over reactor core 
/av = void fraction averaged over whole core 
/o = constant portion of the void fraction averaged over 

whole core 
/ = amplitude of fluctuating component of the void 

fraction 
kex = excess multiplication factor 
I = mean lifetime of neutrons in unperturbed reactor 
(f> = reactor neutron flux 
—a = void fraction coefficient of reactivity 

= fraction of fission neutrons which are delayed 
7 = "e-folding" coefficient for fluctuating component 

of average void fraction (a positive quantity, the 
inverse of the "e-folding" time) 

e = excess multiplication factor with no void 
\i = decay constant for neutron precursors of the zth 

group 
co = angular frequency of the periodic fluctuation of 

the average void fraction 
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