Corrigendum

M. SALVATORES, I. SLESSAREV, and A. TCHISTIAKOV, "Analysis of Nuclear Power Transmutation Potential at Equilibrium," *Nucl. Sci. Eng.*, **124**, 280 (1996).

Corrected versions of Tables II, III, and IV and Figs. 1 through 4 follow.

TABLE II

Normalized Toxicities of J Families T_J^{norm} at Equilibrium (in Sieverts per 1 g of a Family) and Normalized Equilibrium Masses δ_J for a Unit Feed Rate (the $\delta_{23}s_U$ in standard LWR with $F = 10^{14} \text{ n/cm}^2 \cdot \text{s}$, was taken equal to 1); T_J^{norm} was Averaged on Short (10² to 10⁴ yr) and Long (10² to 10⁶ yr) Time Intervals (Negligible Losses Rates)

	Thermal Reactors $(F = 10^{14} \text{ n/cm}^2 \cdot \text{s})$			(F	Fast Reacto = 10 ¹⁵ n/cn	rs n ² ⋅s)	Superthermal Spectrum $(F = 10^{16} \text{ n/cm}^2 \cdot \text{s})$		
"Fathers" of Families	δյ	T ^{norm} Short	T _J ^{norm} Long	δյ	<i>T_J^{norm}</i> Short	T ^{norm} Long	δι	T ^{norm} Short	T ^{norm} Long
232Th 231Pa 233U 235U 238U 238U 237Np 238Pu 239Pu 240Pu 241Pu 241Pu 242Pu 241Am 242mAm 242mAm	4.8 1.23 0.42 1.0 16.0 1.25 0.85 0.35 0.77 0.6 1.67 1.06 0.38 1.37 0.89	21 5364 221 372 97 1436 2120 4851 5952 5834 5139 3869 6222 6277 2051	4.6 47 53 19 1 71 77 46 50 62 58 72 60 55 78	4.73 2.36 0.84 1.68 6.59 2.62 1.5 1.48 3.35 1.86 5.36 2.66 1.65 4.46 1.54	38 7583 117 92 841 318 751 4290 6025 4506 3106 3826 5128 6557 798	11 31 62 19 5.7 65 86 28 22 63 56 67 74 32 86	0.036 0.003 0.0015 0.013 0.071 0.002 0.004 0.003 0.012 0.011 0.042 0.022 0.007 0.033 0.011	41 3633 168 173 274 1984 4411 4610 4723 4661 5883 6019 6125 6120 2626	3.8 36 23 2.5 3.5 55 63 58 59 62 60 63 62 61 86
²⁴⁴ Cm ²⁴⁵ Cm	1.12 0.67	6135 5942	53 101	3.14	6264 7939	19 71	0.031 0.021	6058 5876	61 97

TABLE III

Relative Inventory Mass Toxicities $\Delta_{r, LWR}$ at Equilibrium (Closed Fuel Cycles)*

Reactor and Fuel Types	$\Delta_{r, LWR}$ (Short/Long)			
LWR (feed: $55\% 235U$, $45\% 238U$)	1/1			
Fast reactor (feed: $100\% 238U$)	4.6/1.6			
Fast reactor (feed: $100\% 232Th$)	0.15/2.2			

*Fluxes: $F = 10^{14} \text{ n/cm}^2 \cdot \text{s in LWR}$; $F = 10^{15} \text{ n/cm}^2 \cdot \text{s in fast}$ reactors.

TMP of Different Nuclear Power Designs (Closed Fuel Cycles, Equilibrium State)*	LWRs Fast Reactors Fast Spectrum ADSs	Burner Breeder Breeder CAPRA Breeder Breeder Burner	ide Plutonium Thorium Plutonium Uranium- Uranium- Thorium- ²³⁵ U Thorium Plutonium oxide oxide oxide plutonium plutonium oxide oxide oxide oxide	% 239Pu 233Pu 239Pu 40% 238U 239Pu 239Pu<	I I I I I I 0.97 0.97 0.99 0.95	5 15 </th <th>0.42 0.1 1.15 0.32 0.66 0.4 0.4 0.4 1.3</th> <th>3E-2 1.03/6.2E-1 4.5E-4/1.1E-2 9.3E-2/5E-2 1.8E-2/1.6E-2 2.8E-2/1.6E-2 1.8E-2/1.6E-2 9.6E-4/2.7E-2 4.5E-4/1.1E-2 9.3E-2/5E-2 E-2 1.31E+1/2.6 4.6E-4/1.1E-2 1.4E-1/9E-2 2.6E-2/1.7E-2 2.6E-2/1.7E-2 1.4E-1/9E-2 1.4E-1/9E-2</th> <th>.5 -0.4/-0.2 -0.35/-0.35 +1.2/+1.2 -0.03/-0.025 +0.5/+0.5 +0.1/+0.1 +0.1/+0.1 +1.4/+1.4</th> <th>s normalized on the reference case. For the reference reactor (the standard LWR): $G = 0$, FWT = 1, TMP_s = -1.</th>	0.42 0.1 1.15 0.32 0.66 0.4 0.4 0.4 1.3	3E-2 1.03/6.2E-1 4.5E-4/1.1E-2 9.3E-2/5E-2 1.8E-2/1.6E-2 2.8E-2/1.6E-2 1.8E-2/1.6E-2 9.6E-4/2.7E-2 4.5E-4/1.1E-2 9.3E-2/5E-2 E-2 1.31E+1/2.6 4.6E-4/1.1E-2 1.4E-1/9E-2 2.6E-2/1.7E-2 2.6E-2/1.7E-2 1.4E-1/9E-2 1.4E-1/9E-2	.5 -0.4/-0.2 -0.35/-0.35 +1.2/+1.2 -0.03/-0.025 +0.5/+0.5 +0.1/+0.1 +0.1/+0.1 +1.4/+1.4	s normalized on the reference case. For the reference reactor (the standard LWR): $G = 0$, FWT = 1, TMP _s = -1.
TMP of Different 1		Burner Breeder	Plutonium Thorium oxide oxide	²³⁹ Pu ²³² Th	1 1	5 15	0.42 0.1	1.03/6.2E-1 4.5E-4/1.1E-2 4.5E-4/1.1E-2 4.5E-4/1.1E-2	-0.4/-0.2 -0.35/-0.35	alized on the reference case. For
	LWRs	ial feature	cycle Mixed oxide	fuel ²³⁵ U-55% ²³⁸ U-45%	1	avy atoms) 5	= <i>G</i> 0	= FWT ^{Dm} = 1% 2.4E-2 ^a /3.2E-2 ^{Dm} = 10% 2.4E-1/6.6E-2	s _m = 1% -0.5/-0.5	All FWT and TMP values norm:

TABLE IV

Fig. 3. The ²³²Th family normalized concentrations $N_J\left(\sum_J N_J = 1\right)$ at equilibrium when irradiated in two different spectrum types.

NUCLEAR SCIENCE AND ENGINEERING VOL. 125 MAR. 1997