
Letters to the Editor 

Comments o n "Invest igat ion of Interface-Current 
Solut ion Techniques for Coupled 

Heterogeneous Cells" 

I. INTRODUCTION 

In the introduction to Ref. 1, Thomsen makes a statement 
about a technique that we contributed a few years ago.2 Thom-
sen states that we could not conclude that the system matrix 
originating from the interface-current method can be symme-
trized. Symmetrization is indeed possible, but Thomsen may 
have been misled by a few errors in some of our formulas. How-
ever, our paper is correct once these errors are corrected. Any 
reader interested in this interface-current symmetrization pro-
cess may also refer to another presentation (with different no-
tations but with the same results) at the Paris conference eight 
years ago.3 
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The global system may then be reduced to the form given 
by Eq. (5) in Ref. 2 where the global system matrix M = (MAX ] 
is defined as 

M^ = 6KLDK + GKTKL(GL)T 

and the cell diagonal matrix is defined as 

Note that the matrix M is symmetric owing to the simple 
form of matrices G and B. 

The first error in our original paper comes from an incon-
sistent definition of the matrix T, incorrectly declared as or-
thogonal because we forgot to include the geometric scaling 
factors. The second error is that the subtraction of the Q* ma-
trix was forgotten in the cell diagonal matrices D*. 

II. CORRIGENDUM FOR SEC. Ill 

In Eq. (4a), we assumed that unknowns corresponding to 
zones with zero scattering cross sections and external faces with 
zero albedos (i.e., zero incoming currents) are eliminated. Be-
cause flux/current values for these unknowns can be recon-
structed directly from the solution vectors eK, these are not 
independent unknowns of the interface-current system to be 
solved. 

As for the second equation, which involves the boundary 
conditions, instead of producing multiple unrelated equations 
for each cell as in Eq. (4a), we will get a global coupling equa-
tion. The global feedback matrix R can be written as the prod-
uct of a diagonal matrix U with a symmetric orthogonal matrix 
P used to couple the interface currents. The components of the 
diagonal matrix assigned to cell K are defined as 

= 4x1ytf&y , 
UL+c.l+P — lrSaAa6, 

and 
trK _ rjK uL+a,i ~ l, L+a 

ocff > 

0 
where Aa is the albedo if surface a is an external face and is 
equal to one if surface a is an interface. 

We are now able to state the second set of interface-current 
equations for cell A'as Eq. (4b) in Ref. 2. The problem of solv-
ing the transport equation inside domain D has therefore been 
reduced to the simultaneous resolution of the two sets of 
interface-current equations [Eqs. (4a) and (4b)], which we will 
now combine into a single symmetric linear equation. To do 
this, let us first invert the boundary condition matrix R as 

where 

III. A NUMERICAL EXAMPLE 

A simple numerical example will now be presented to help 
in understanding the symmetrization process that is implicit in 
our solution algorithm. A two-cell assembly is constructed as 
indicated in Fig. 1, with the one-speed cross sections and fixed 
source indicated in Table I. 

These data were first processed by the EURYDICE-2 op-
tion of DRAGON (Ref. 4) using the DP-0 option, and the fol-
lowing cell wise-dependent response matrices were obtained: 

Q1 = 

8.7400 2.1852 2.5425 2.5425 2.5425 

2.1852 1.8328 1.3588 1.3588 1.3588 

2.5425 1.3588 0.0 

2.5425 1.3588 0.9034 0.0 

2.5425 1.3588 0.8397 0.8397 0.0 

2.5425 1.3588 0.8397 0.8397 0.9034 

2.5425 

1.3588 

0.9034 0.8397 0.8397 

0.8397 0.8397 

0.9034 
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CO 

region 2 region 4 

<cy ( region 3 1 

1.3 1.5 

T ^ = (1 - 6 * i ) P / l X ( U L ) -

Fig. 1. Description of the two-cell assembly. The rod radii are 
equal to 0.6 and 0.5 cm in the square and rectangular cells, respectively. 
The neutrons are reflected isotropically around the assembly. 



Q2 = 

and 

^5.1067 3.0363 1.4290 1.4290 1.8013 1.8013 

3.0363 6.3250 2.5231 2.5231 2.7639 2.7639 

1.4290 2.5231 0.0 0.6807 0.8482 0.8482 

1.4290 2.5231 0.6807 0.0 0.8482 0.8482 

1.8013 2.7639 0.8482 0.8482 0.0 1.0518 

1.8013 2.7639 0.8482 0.8482 1.0518 0.0 

where the cell-dependent unknowns are the two fluxes followed 
by the A'-oriented and y-oriented interface currents, respec-
tively. 

The diagonal GK and (U* ) _ 1 matrices are respectively 
given by 

G1 = diag(14.2122 7.0249 4.0841 4.0841 4.0841 4.0841) 

G2 = diag(9.8696 14.6348 4.0841 4.0841 4.7124 4.7124) 

( U ' r 1 = diag(0.2345 0.3559 0.2449 0.2449 0.2449 0.2449) 

(U2)-1 = diag(0.3377 0.1708 0.2449 0.2449 0.2122 0.2122). 

The global permutation matrix P corresponding to the vol-
ume and surface numbering is 

TABLE I 

Nuclear Data for the One-Speed Two-Cell Assembly 

1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 

Type of E, E.' Fixed Source 
Region Material (cm"1) (cm"1) ( s - ' - cm ' 3 ) 

1 Fuel 0.35 ' 0.3 1.5 
2 Water 0.45 0.4 0.0 
3 Fuel 0.4 0.3 2.5 
4 Water 0.45 0.4 0.0 

5.072/0.3 16.907 

e 2 / E | 6.633/0.4 16.583 
e 7 / E | 4.964/0.3 16.547 

^ s / E I . 6.462/0.4^ 16.156 

The linear system is next solved using the following fixed 
source: 

e — col(1.5 0 0 0 0 0 2.5 0 0 0 0 0) . 

And, the corresponding solution is obtained as e = 
(M)"1 de. The neutron fluxes are finally given by 

<t> = 

As one can see, the interface-current symmetrization pro-
cess is rather difficult to explain, and we apologize for these few 
errors that led Thomsen to conclude that symmetrization was 
impossible. 

Robert Roy 
Alain Hebert 
Guy Marleau 

Ecole Polytechnique de Montreal 
Case postale 6079, succ. Centre-ville 
Montreal (Quebec), Canada 

April 10, 1995 

The global system matrix M is then obtained using Eq. (7): 

M 

38.634 -2 .185 -2 .542 -2 .542 -2 .542 -2 .542 0.0 0.0 0.0 0.0 0.0 0.0 

-2 .185 15.730 -1 .359 -1 .359 -1 .359 -1 .359 0.0 0.0 0.0 0.0 0.0 0.0 

-2 .542 -1 .359 4.084 -0 .903 -0 .840 -0 .840 0.0 0.0 0.0 0.0 0.0 0.0 

-2 .542 -1 .359 -0 .903 0.0 -0 .840 -0 .840 0.0 0.0 4.084 0.0 0.0 0.0 

-2 .542 -1 .359 -0 .840 -0 .840 4.084 -0 .903 0.0 0.0 0.0 0.0 0.0 0.0 

-2 .542 -1 .359 -0 .840 -0 .840 -0 .903 4.084 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 27.792 -3 .036 -1 .429 -1 .429 -1 .801 -1.801 

0.0 0.0 0.0 0.0 0.0 0.0 -3 .036 30.262 -2 .523 -2 .523 -2 .764 -2 .764 

0.0 0.0 0.0 4.084 0.0 0.0 -1 .429 -2.523 0.0 -0 .681 -0 .848 -0 .848 

0.0 0.0 0.0 0.0 0.0 0.0 -1 .429 -2.523 -0 .681 4.084 -0 .848 -0 .848 

0.0 0.0 0.0 0.0 0.0 0.0 -1 .801 -2 .764 -0 .848 -0 .848 4.712 -1 .052 

0.0 0.0 0.0 0.0 0.0 0.0 -1 .801 -2 .764 -0 .848 -0 .848 -1 .052 4.712 

where we can observe the symmetry of this matrix. 
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Reply to "Comments on 'Invest igat ion of 
Interface-Current Solut ion Techniques for 

Coupled Heterogeneous Cells' " 

The corrigendum by Roy, Hebert, and Marleau1 has been 
of great help in understanding their transformations of the 
multicell system equations. While retaining Eqs. (4) and (5) of 
the original paper,2 Roy, Hebert, and Marleau replace all the 
associated, unnumbered equations (except the G terms) by the 
new ones. I shall not hesitate any further to recognize the sym-
metrization of the system matrix and the subsequent applica-
tion of the alternate direction implicit (ADI) procedure, which 
seems to overcome the problem that the symmetric matrix is not 
positive definite. 

Having grasped the basic idea, however, Roy, Hebert, and 
Marleau's formulation seems unnecessarily complicated. Fur-
thermore, the same principles can be applied to the multiple-
flight probability, interface-current equations in which the fluxes 
are eliminated. I do not share Roy, Hebert, and Marleau's con-
cerns about this reduction (based on some "computational 
discrepancies" that they seem to have had earlier2). On the con-
trary, I found that the reduction works well, and in my view, 
it is preferable to iterate on the smaller system of currents only. 
Hence, it is interesting to discuss the symmetrization of the 
latter system in some detail. 

Substituting the current densities J„ = j„/An into the cell 
equations [Eq. (9) of my paper3], we have 

= C„ + £ PnlAiJ,', 
i 

where it may be recalled that c„ is the outgoing current due to 
sources [Eq. (22)] and that symmetry is ensured by the reci-
procity relation for multiple-flight transmission probabilities 
PNLA/ = P L „ A N . 

The corresponding system equation in matrix notation is 
expressed as 

AJ+ = C + PAJ~ , 

where A is a diagonal matrix and P is a block-diagonal matrix, 
assuming cellwise organization of the current vectors. 

The coupling equation is 

J + = TJ" , 

where the nonzero entries of the symmetric connectivity ma-
trix T are 1 for interfaces and for boundaries (diagonal 
or off-diagonal for reflective or cyclic boundary conditions, 
respectively). 

Now, eliminating J + and dropping the superscript on J~, 
we obtain after some reorganization 

(T - P)AJ = C . 

Since any pair of symmetric entries in T corresponds to the two 
sides of an interface (or corresponding boundaries in the cy-
clic case) having the same area, the system matrix is seen to 
be symmetric. Based on the conservation equation [Eq. (15)], 
the column sums of the system can be seen to be nonnegative. 
However, the system matrix is not diagonally dominant, which 
is a prerequisite for using point successive overrelaxation. 

Apparently, the lack of diagonal dominance is not impor-
tant when using the ADI procedure, which gave good conver-
gence as described by Roy, Hebert, and Marleau in Sec. IV of 
their paper.2 Hence, it seems fair to assume that this also holds 
for the reduced system considered here. 

Assume that we renumber the currents, starting with all the 
currents parallel to the A" axis, taken cell by cell and line by line, 
followed in the same way by the currents along the other co-
ordinate direction(s). Here, we further limit our discussion to 
the case with reflective boundary conditions. Then, the diago-
nal blocks containing all the nonzero entries of T will become 
tridiagonal. In the ADI iterations, all the off-diagonal blocks 
are moved to the right side of the equation, where we use the 
most recent currents. This matrix splitting allows a simple it-
eration calculation based on the forward elimination and back-
ward substitution method. 

The question is whether this special ADI method with over-
relaxation (reminiscent of successive line overrelaxation) can be 
made more efficient than the point iterative method I described 
in my paper. Considering the increased number of operations 
per ADI iteration, this requires an improved convergence rate. 
The answer to this question is not obvious. For the time being, 
however, I am quite satisfied with the performance of my old 
method, so I shall leave the question open to other investi-
gators . 

Knud L. Thomsen 
Riso National Laboratory 
Nuclear Safety Research Department 
P.O. Box 49 

DK-4000 Roskilde, Denmark 

June 13, 1995 
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