Letter to the Editor

Reply to "Comments on the Existence of Measured Discontinuity in the Thermal-Neutron Diffusion Coefficient Across the Ice-Water Phase Transition"

In his letter, Williams¹ states "In a Technical Paper Salaita and Robeson² state that their measurements in D_2O ice in conjunction with earlier measurements in H_2O ice and water support arguments for the probable existence of a discontinuity in the thermal-neutron diffusion coefficient across the phase transition for H_2O , independent of density effects."

I would like to point out that a careful review of the paper will show (a) that the results give no evidence of a discontinuity in the value of D_0 across the D_2O phase transition, and (b) the probable existence of discontinuity in D_0

across the H_2O phase transition was based on results of measurements we performed on H_2O near the freezing point (1°C) and in ice at -20°C. Thus we did not extrapolate from room temperature. The method of evaluating the probable discontinuity in D_0 across the H_2O phase transition was similar to that used by Silver.³

We do, however, agree that improved accuracy in neutron diffusion measurements is highly desirable. Further, a uniform and consistent method of data evaluation might assist in removing discrepancies and indeed in appraising the validity of theoretical models.

George N. Salaita

Southern Methodist University Department of Physics Dallas, Texas 75222

March 22, 1972

¹P. M. Williams, Nucl. Sci. Eng., 47, 389 (1972).

²G. N. Salaita and A. Robeson, Nucl. Sci. Eng., 46, 214 (1971).

³E. G. Silver, Nucl. Sci. Eng., 34, 275 (1968).