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The value of C(£) can be written more simply 
when cot = (2n + 1)71. If we restrict consideration 
of the solution to only those values of t when the 
above equation is satisfied, 
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Substitution of Eq. (11) into the equation for neu 
tron density, Eq. (7), then yields 
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If ei is chosen equal to zero (i.e., for reactivity 
oscillation about a zero mean value), the neutron 
flux can be approximated by 

N(t) = [1 + e2 sin utf]exp j ^ - . (13) 

Hence, the mean power drift is exponential with an 
e- folding time of 2r*/e 2

2 and has a second-order 
dependence on the reactivity perturbation. It 
should be noted that the result is independent of 
the oscillation frequency, cv . 

Evidently, the drift can be reduced to zero by 
setting 

(1 ~ ei)2 -
 e

 2* = 1 

Or 

C l
 = l - V T ^ e ? 

Although the simplicity of the model precludes 
rigorous application of the solution, the results are 
in agreement with physical intuition and show the 
important role of the delayed neutrons in causing 
the mean power drift during an oscillation-experi-
ment. 
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A More Straightforward Use of 
Variational Principles with 

Boundary Conditions 

Pomraning and Clark1 recently added boundary 
conditions to a variational principle for solutions 
to the transport equation2 (the additional terms, 
although described as having to be guessed, were 
derived from a general procedure independently 
by Selengut3). Their treatment of one-group dif-
fusion theory for a homogeneous slab will now be 
reviewed for the special situation in which scat-
tering is isotropic and no neutrons enter the med-
ium from outside its surfaces. 

For a slab extendingfrom z = a to b, a functional 
is defined 

dz f_d\i [(/)* m - s<f>* - T<t>] + 

The operator H is given by 

H<j>(zffi) = li ^ + 0 - | f d\xT 0 (z,ju') , 

where 2 is taken in units of total mean f ree paths. 
The symbol c is the number of secondaries per 
collision, S is the (given) source, and 

0*(*,ju) = (f)(z,-ii), 

T{Z,[L) = S(z,-FI). 

Imposing the condition that F be stationary with 
respect to arbitrary variations in 0 is equivalent 
to making 0 equal the solution to the t rans-
port equation: 

H(j)(z,fJL) = S(Z,JJL) and 

<p(a,JUL) = 0 for ILL > 0. 

0(6,JUL) = 0 f o r 11 < 0 . 

We now further specialize to the situation in 
which S is isotropic: 

S(z,n) = T(z,ii) = |s0(s). 

The authors make a P-l approximation, 
1 3 

0U,ju) = 2 0(*) + g ^ 

1

G. C. P O M R A N I N G and M . C L A R K , Jr., Nucl. Sci. Eng. 
16, 147-154 (1963). 

2

D. S. SELENGUT, Hanford (Quarterly Report, H W -
59126, 89-124, Richland, Wash., (1959). 3

D. S. SELENGUT, Trans. Am. Nucl. Soc.f 5, 1 (1962). 
p. 40. 
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and form the 'reduced Lagrangian' (since it will be 
impossible to make this quantity stationary for all 
arbitrary variations in 0 and J, the term 'reduced 
Lagrangian' is really a misnomer) as a functional 
of the scalar flux 0(2) and current j( z), 

Requiring the f i rs t variations of this functional to 
vanish produces the familiar differential equations 
of 'diffusion theory', 

+ (l-c) *(*) =S0(z), 

J ( z ) = -
1 d<j>(z) 

along with a condition to complete the specification 
of 0 and J, 

\ 0(a) + \ J(a)j 5 0(a) - | j 0(a) + 1 J( f l)j 5 J(a) + 

This letter is primarily concerned with the re -
maining steps taken by the authors. They note that 
making the coefficient of 60(a) vanish implies the 
boundary condition that 

r = M = l 
" m " 2 > 

while the vanishing of the coefficient of 6 j ( a ) im-
plies the contradictory condition that r equals 
4 g. At the other boundary, the same contradictory 

values appear for J(b)/<f>{b)> which is therefore 
also called T. Obviously, some restrictions must 
be placed on the variations allowed! The authors' 
reaction was to eliminate J at each boundary in 
favor of T, which was then held stationary as 0 
was varied. The resulting coefficient of 60 at 
each boundary vanished if 

For physical reasons, only the positive root was 
accepted. 

This value gives an extrapolation length 
d = l / ( 3 r ) = 0.7071, 

which is very close to 0.7104, the value for the 
exact Milne problem for a non-absorbing medium. 

In contrast, values of r equal to ^ from Marshak 

boundary conditions and 1/73* from Mark boundary 
conditions, yield values of d equal to 0.6667 and 
0.5773 respectively. The conclusion was that a 
method had been found for producing considerable 
improvements over the results of existing proce-
dures. 

However, certain features of this analysis and 
the later extensions4"® raise some questions: 

1) Why were the restrictions on the variations 
of the flux components put in the form of linear 
couplings at each boundary? The only reason 
given for holding T constant was that it would r e -
move the dilemma of having contradictory results, 
but so would an infinitude of other restrictions. 
The step certainly does not follow from the 
linearity of H. Arbitrarily holding T constant 
would seem merely to lead to a fortuitous com-
promise between the contradictory values implied 
by independent variations (neither of which is very 
bad). If simplicity was desired, holding J(a) and 
J(b) stationary would have been simpler; as will 
be seen, even that step often turns out to be more 
accurate as well. 

2) Why did the variational principle fail to pro-
vide a unique results Physical reasoning was re -
quired to eliminate the negative square root of T, 
and the occurrence of extraneous roots was even 
more pronounced in later work4'®. Yet, since the 
variational principle is equivalent to a specifica-
tion of all the conditions that the solution must ful-
fill, it should certainly lack no information needed 
to complete the determination of any reasonable 
approximate function. Note that this matter is 
quite apart from relying on intuition to choose the 
approximate form of the function before it goes in-
to the variational principle. 

3) Was it reasonable for the variational prin-
ciple to imply that the same rigid boundary condi-
tion should be used for such an extensive vdriety 
of situations? According to the procedure reviewed 
here, the variational principle furnishes a single 
fixed value of the extrapolation length, which is to 
be used in diffusion theory for every bare slab, 
regardless of its thickness, source distribution, 
and the number of secondaries per collision. An 
ability to adjust for the special properties of in-
dividual situations would be a major advantage 
over rigid boundary conditions like Mark's or 
M a r s h a l s . A variational principle would seem 
ideal for producing this feature. More accurate 
calculations do3>®. 

4) Did comparisons with results from the non-
absorbing Milne problem provide a conclusive 
test? Evidently, the linear boundary coefficients 

4

G.C. P O M R A N I N G and M . C L A R K , Jr., Nucl Sci. Eng. 
17, 227-233 (1963). 5

G. C. P O M R A N I N G , Nucl. Sci. Eng. 18, 528-530 (1964). 
®G. C. P O M R A N I N G Ann. Phys. 27, 193 (1964). 
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obtained f r o m the variat ional principle a r e to be 
used fo r a l l bare slabs, and in the P - 3 case5 '6 they 
were in fac t specifically recommended for many 
types. These boundary conditions were declared 
'improved* (over M a r s h a l s e.g.) on the bas i s of 
how closely they reproduced the extrapolation 
length of the non-absorbing Milne problem. If such 
a cr i te r ion could actually decide universally best 
boundary conditions, one could simply adopt those 
given by the exact solution to the non-absorbing 
Milne problem! However, a forthcoming example 
supports the opposite conjecture: rigid boundary 
conditions specialized to one situation (even for tu-
itously) a r e likely to be bad for others . For s i tua-
tions other than sou rce - f r ee infinite media, the 
Pomraning-Clark rigid conditions were not shown 
to be bet ter than those of Mark or Marshak. Fo r 
one example, they will be shown to be worse . 

5) Apart from the question as to which physical 
situations should have been considered, did the 
quantities examined for error provide a conclusive 
test? In some situations1 '4 " 8 , the accuracy of the 
extrapolation length at a f r e e boundary was tested; 
in o thers 8 , it was the capture f ract ion of neutrons 
incident f r o m the outside. There i s no reason to 
expect that the accuracy of any single a rb i t r a ry 
quantity like these can generally be used to de te r -
mine the accuracy of the flux at all positions. In-
deed, since an approximation of given order has 
limited accuracy, a change f r o m one reasonably 
good boundary condition to another would improve 
some proper t ies of the flux necessar i ly at the ex-
pense of others; the accuracy of the functional 
itself is all that the variational principle is known 
to emphasize. 

6) Since this procedure yields results different 
from those of the idirect method' when identical 
quantities are to be determined, has an improve-
merit over this standard old technique been es-
tablished? In the 'd i rec t method', the p a r a m -
e t e r s of an explicit t r i a l function a re determined 
by requiring the f i r s t par t ia l derivat ives of the 
result ing functional with respect to each to vanish. 
The t reatment of boundary conditions is s t ra ight -
forward. Now if a par t icular t r i a l function hap-
pens to be the most general solution to the Eule r -
Lagrange differential (e.g., diffusion) equations, 
the direct method yields p a r a m e t e r s differing 
f r o m those of Pomraning and Clark. If their p ro-
cedure is actually bet ter , an attempt should be 
made to extend it to the genera l d i rec t method. 

Most of these questionable points seem to have 
resul ted f r o m a belief that the selection of a p a r -
t icular solution to the different ial equations should 
be based on l inear re lat ions between the flux com-
ponents at each boundary. However, a solution 
could be selected by many other means. For an 
al ternate condition, it i s now suggested that the 

functional of the most general solution to the dif-
ferent ia l equations be made stat ionary with r e -
spect to i ts a rb i t ra ry constants. The difficulties 
mentioned will then be eliminated. 

For example, the general solution of the diffu-
sion equation is 

<j)(z) = <pP(z) + A cosh Kz + B sinh Kz, 

-3 J(z) = (j>p{z) + AK sinh Kz + BK cosh Kz, 

where K= \ /3(l-c), (j)p{z) is a (known) par t icular 
solution to the inhomogeneous diffusion equation, 
and A and B a r e the desired coefficients of the 
homogeneous solutions. Since the integral t e rm of 
the variat ions of the functional automatically van-
ishes, merely inser t the above express ions and 
their variat ions, 

6(j>(z) = 5A(cosh Kz) + 5£(sinh Kz), 

-3 6J(z ) = 6A(K sinh Kz) + 5B {K cosh Kz), 

evaluated at z = a and 6, into the express ion for 
the vanishing of boundary condition variat ions. 
Then evaluate A and B f r om the condition that the 
coefficients of 6A and 6B vanish. 

For many important situations, a = -b, S0(z) is 
symmetr ic about z = 0, and as a resul t , B = 0. For 
example, for each source t e r m of the fo rm, 

So(z) = cos fiz for -b < z < b, 

the c o e f f i c i e n t s has a corresponding t e rm , 

(|cosj36--|/3sin/3&) i fs inhif t + (|/3sin/36 -cos/3&)cosh/» 

( l - c + | / 3 2 ) (cosh2Kb - | t f 2 s i n h 2 Kb) 

In order to test the accuracy of this method, we 
now consider a situation with the interesting prop-
er ty of being analytically solvable both by t r ans -
port theory and diffusion theory. Let a = 0 for a 
non-absorbing (c= 1) slab containing a symmet r i -
cally distributed source decreasing monotonically 
f r o m the sur faces to the center , 

So(z) = | [E2(Z) + E2(b-z)], 

where 

Enl(x) = f^ nn-2e~* dii 

i s a tabulated function7 . The exact vector flux 
f r o m t ranspor t theory is 

7

K.M. CASE, F.de H O F F M A N and G. PLACZEK, Intro-
duction to the Theory of Neutron Diffusion, p. 153. Los 
Alamos Scientific Laboratory, Los Alamos, New Mexico, 
(1953). 
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1 z b 
= 9 (1 - exp - - + - ) for 11 < 0 

£ 11 IX 

= | (1 - exp - - ) for ]U> 0, 

and the resulting scalar flux is 

M*) = D\I = 1 -\[E2{Z) + E2{B-z) ] . 

The diffusion-theory solution with the same 
source is 

<M*) =A - | [E4(Z) +E4(b-z)], 

JD(z) = ±[E3(b-z) - £ 3 ( 2 ) ] , 

where a term Bz was dropped f rom 0D by sym-
metry. Since A does not appear in JD(z), 

6 JD = 0, 

i.I 

i.o 
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Fig. 1. Scalar flux from transport theory and diffu-
sion theory with various boundary conditions. The 
medium is a very thick nonabsorbing slab with a source 
distribution gradually decreasing from the surfaces to 
the center. 

and T 
2' the Marshak value 0 

Note that some proper t ies here a re a special 
consequence of source symmetry and the absence 
of absorption. As i l lustrated in the previous ex-
ample, the resul ts for other c i rcumstances do not 
agree with M a r s h a l s , and there is a grea te r de-
pendence on the slab and source propert ies . Here 
the diffusion theory expression for the current is 
exact, and the variational principle duplicates the 
Marshak condition in s t ress ing the importance of 
this quantity. 

Now the resul ts will be tested numerically for 
the situation in which b <*>. For different types 
of boundary conditions, 

A = 0.9330 by Mark 

= 1.0000 by Marshak 

= 1.0000 by present work 

= 1.0303 by Pomraning and Clark 

= 1.0328 by Milne 

Figure 1 shows the exact sca lar flux along with 
those calculated by diffusion theory with these co-
efficients. While the Mark conditions a r e clearly 
the worst , the example shows that those of Pom-
raning or Milne (which a r e nearly indistinguish-
able) a r e not a lways 'be t te r ' than those of Marshak. 
The curves also demonstrate the dangers of judg-
ing a boundary condition by the accuracy of an 
a rb i t r a ry property, since no boundary conditions 
produce the best flux at all positions: the flux of 
Milne is the most accurate at positions that a r e of 
the order of a mean f r e e path f rom the surface , but 
only Marshak 's and our suggested boundary con-
ditions produce exact values at the surface and 
throughout an infinite interior length. 

The variational principle yields an entire flux 
distribution, which obviously can be used directly 
for many purposes. Its only exceptional feature, 
however, is the result ing accuracy imparted to 
the functional i tself, which can be made the flux 
weighted average of any quantity desired2 . Ex-
amining this quantity, therefore , would seem to be 
the most reasonable way to test the power of the 
variational principle. Moreover, since the sole 
mechanism of this method is to make an approxi-
mate functional resemble the exact one, its accur -
acy would also provide some indication of the 
soundness of conflicting mathematical procedures. 

The general expressions show that for the ad-
joint source in this let ter , the exact 

- \ fa M * ) So(*) dz, 

and the approximate 

F[<t>D,JD) = - S*Z) dz ^jg(a) + 8 

8 

16 

_9 
16 4(b) 

For the numerical case considered here, 

=\f^E2\z)dz- | = - + 2 In 2), 

and 

where 

1 = 3 f°°E2 E4 dz = J O 
11 - 12 In 2 

10 
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The final result is that the e r ro r in the reduced 
functional is 

^[</>d ,Jd\ - Jfyr] = 0.0081 + | (A-l)2. 

Thus, the value A = 1, given by the treatment sug-
gested here, yields the best possible functional that 
can be obtained by diffusion theory! For close 
values, the boundary t e rms make the functional 
much more accurate than the expression for 
F[(j)T{z,ij)] with 0 T U ) merely replaced by (j>D(z). 

It is now incumbent on this letter to justify a 
more general basis for the suggested procedure 
and to define the conditions for its validity. It 
would also be desirable to alleviate some former 
anxiety that " the variational method has given us 
too much information"1 and " the reason that this 
trouble a r i ses is apparently a peculiarity in the 
application of the variational method to the t r ans -
port equation''6. Rather, it is satisfying to find 
that a straightforward use of the variational prin-
ciple always produces exactly enough information 
to determine all the unspecified properties of the 
t r ia l function. 

The functional is stationary for all variations 
in its argument only when they are about the exact 
solution. Therefore, if a t r ial function incorpor-
ates any approximation, there is always a possi-
bility of imposing too much stationariness about it, 
and resul ts f rom such action must be contradic-
tory. A straightforward procedure, however, would 
be to require stationarity at each step only for 
variations that preserve all previously established 
properties. When a quantity is unknown, the arbi-
t r a ry variations made on it will then be completely 
uncoupled with others, and its determination will 
be equivalent to utilizing a (reduced) variational 
principle. The uniqueness and reliability generally 
available f rom variational principles will there-
fore be established automatically. On the other 
hand, one could attempt to make the original 
functional stationary for variations of a quantity 
^bout some value already fixed in the t r ia l func-
tion. Then a danger is that such stationarity may 
not be very dependent on the quantities that were 
meant to be determined. 

For example, say a P - l approximation is 
adopted. The variational principle without bound-
ary conditions then yields the usual P - 0 and P - l 
equations when stationarity is imposed for va r -
iations of the two retained Legendre components. 
These variations are within the constraints of the 
P - l approximation; however, a possible alternate 
way of imposing stationarity about a P - l ap-
proximation would be to do so for variations of 
any higher Lengendre component f rom its zero 
value. For any single component, the usual 
P-equation associated with it results, but with only 

the P - 0 and P - l te rms not zero. Thus, variations 
of the P - 2 component imply resul ts that are in-
compatible with the P - 0 and P - l equations; ex-
perience is that the latter are more reliable. Var-
iations of still higher components yield no 
information at all. 

In the straightforward procedure suggested, it 
does not matter whether an approximate condition 
adopted in the tr ial function came directly from 
outside the variational principle or f rom a partial 
application of it. A reduced variational principle 
can be formed in either case. When boundary con-
ditions are included in the functional and a P - l 
approximation is made, stationarity is possible 
under enough variations to imply the differential 
equations of diffusion theory. The method sug-
gested immediately adopts the differential equa-
tions as a constraint on all further variations, and 
the last of the successively reduced variational 
principles is only for the arbi t rary constants in 
the general solution. 

Since an argument function obtained through the 
suggested method does not render the functional 
stationary with respect to variations in the ap-
proximate conditions, whatever was the source of 
these conditions must also be the provider of their 
justification. If all the conditions are quite accur-
ate, the consequences of imposing stationarity will 
likewise be accurate, but the resul ts a re typically 
so sensitive to the validity of these constraints, 
that poor assumptions can rapidly lead to disaster . 

For example, if a non-absorbing slab contains 
an asymmetric source and is 1/ y/2 mean f r ee 
paths thick, the antisymemtric solution to the 
homogeneous diffusion equation will be assigned an 
infinite coefficient8. This combination of source 
asymmetry and slab thinness thoroughly destroy 
the requisite validity of diffusion theory. It is 
certainly plausible that an approximation special-
ized to one type of situation would be exceptionally 
poor for the extreme opposite. 

Conversely, if rigid boundary conditions yield 
an accurate result f rom a faulty use of diffusion 
theory, they a re likely to be hazardous for proper 
uses. For isotropic and linearly anisotropic 
beams directed into a semi-infinite medium6, cap-
ture fractions f rom Pomraning's boundary condi-
tions were very accurate but high in both cases. 
Results f rom Marshak boundary conditions were 
rather inaccurate, but since they were high in the 
f i rs t situation and rather low in the second, they 
must be better than Pomraning's for beams with 
some intermediate angular distributions. 5 -8 cal-
culations9 show that these intermediate cases are 

8

G. C. POMRANING (private communication). 9

Furnished privately by T. PERKINS, Aerojet General 
Nucleonics Corp. 
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just the ones for which diffusion theory is best, for 

it describes the flux near the surface quite poorly 

for the two sources considered, but with an (area 

normalized) angular and spatial distribution be-

tween those of the two actual fluxes (all observa-

tions are consistent with diffusion theory being 

best for a source closer to the isotropic of the 

two). Thus, the very data used by Pomraning to 

demonstrate that his method is "superior" indi-

cate that it compares worst when the variational 

principle should be at its best. 

W h e n any calculational method applied to a re-

stricted set of situations m a k e s s o m e arbitrary 

gross quantity remarkably m o r e accurate than the 

detailed distributions or any theoretical reason 

would suggest, the accuracy must be suspected of 

being fortuitous before it is accepted as very 

general. 
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The Treatment of Boundary Terms in 
a Variational Principle Characterizing 

Transport Theory 

In a recent note
1

 A m s t e r has presented a vari-

ational treatment of the diffusion theory boundary 

conditions that is purported to be m o r e correct 

than a variational treatment by Pomraning and 

Clark (hereafter referred to as the P C treatment)
2

. 

His main argument for this position is the belief 

that his procedure is m o r e straightforward and 

less arbitrary. In this note I would like to point 

out that the treatment of the diffusion theory (or 

higher order PN ) boundary conditions is, by nec-

essity, arbitrary (even within the framework of the 

variational method), and further that Amster's 

treatment and the P C treatment are different in 

their aims. 

Considering the first point, it is clear that the 

treatment of the PN boundary conditions must be 

arbitrary. N o finite expansion in full range poly-

nomials can represent exactly the transport theory 

fluxes at the system boundaries since these fluxes 

1

H. A M S T E R , "A More Straightforward Use of Varia-
tional Principles with Boundary Conditions," Nttcl. Sci. 
Eng., this issue, p. 255. 

2

G. C. P O M R A N I N G and M . C L A R K , Jr., Nacl. Sci. Eng., 
16, 147-154 (1963). 

are, in general, discontinuous in angle. The bound-

ary conditions of M a r k and M a r s h a k (see Ref. 3 for 

a discussion) arise from completely different con-

siderations and are a manifestation of this arbi-

trariness. In the P C treatment, which w a s an 

attempt to improve upon the boundary conditions of 

M a r k and Marshak, the transport equation w a s 

characterized by a variational principle, including 

appropriate boundary terms in the functional. The 

use of a Legendre polynomial in angle trial func-

tion led to the usual PN equations together with a 

set of nonlinear equations whose solution yielded a 

new set of boundary conditions applicable to all 

problems. A m s t e r used the s a m e functional to 

characterize the transport equation, but employed 

the classical Ritz method to determine the arbi-

trary constants in the general solution to a partic-

ular problem. Since this procedure leads to a set 

of linear equations with a unique solution, A m s t e r 

argues that his procedure contains no arbitrari-

ness and hence is basically m o r e correct. There 

is an arbitrariness within the variational method, 

however, which A m s t e r failed to consider and 

which strongly affects the result obtained by the 

Ritz method (as well as the result obtained by the 

P C treatment). This is an arbitrariness in the 

boundary terms of the functional itself. Consider 

a system with a free surface (no entering neutrons) 

at the left hand face, z = a. A n appropriate func-

tional is 

] = dz J_\dl± ^*H<t> ~ S(t>* ~ T<t>] + 

+ fl din±$*{a,\±)${a,\±) + 
Jo 

+ fl dua( u)02 (a, fd) + 
Jo 

+ f°du(3(u.)<p*2(a,<p) , (1) 

where a( n) and /3( jut) are completely arbitrary 
functions. T h e notation in Eq. (1) follows that in 

Ref. 2. The choice for these two functions will 

strongly affect the approximate solution found by 

the Ritz method. T h e main point to be emphasized 

is that the treatment of the P
N
 boundary conditions 

by the variational method is, unfortunately, arbi-

trary and it is difficult, if not impossible, to 

remove this arbitrariness. 

The second main point to be m a d e is that the 

results of Amster's treatment and the P C treat-

ment are of a completely different nature. In the 

P C treatment the variational method is used to 

develop an approximate theory in the usual sense 

3

B. DAVISON and J. B. SYKES, Neutron Transport 
Theory, The Clarendon Press, Oxford, (1957). 


