of the curve, but it is likely that the minimum fractional fission-gas release would be around 2×10^{13} fissions/(cm³ sec) fission density.

All the data shown in the figure are for specimens being irradiated at 1400 °C. For our single-crystal spheres we extrapolated from 1300 °C, knowing the temperature dependence of the gas release. Another factor influencing the fractional gas release is the surface-to-volume ratio (S/V) of the specimen. All the data were normalized to the same geometric (S/V) ratio as Soulhier's single-crystal sphere specimens, which by coincidence had the same (S/V) ratio as our fine-grain disk specimens. All specimens were stoichiometric UO_2 of high density (>99% TD except specimen Cl-20 was 98.4% TD; see the figure).

operate in the fission density region where the fractional fission-gas release rate is decreasing or constant with an increase of fission rate, i.e., Dresden, $\approx 6.5 \times 10^{12}$ fissions/(cm³ sec); Yankee, $\approx 1.5 \times 10^{13}$ fissions/(cm³ sec). However, some gas-cooled and fast sodium-cooled reactors are planned to operate in the fission density range above 2×10^{13} fissions/(cm³ sec), where the fractional release will increase with higher fission densities. Any reactor design using oxide fuels operating in the 10¹⁴ fissions/(cm³ sec) range should consider that the fission-gas release rate will be accelerated as the fission density is increased.

ACKNOWLEDGMENTS

Research was sponsored by the USAEC under contract with Union Carbide Corporation.

Most of the UO₂-fueled, water-cooled power reactors

Corrigendum

HENRI FENECH and HENRI M. GUERON, "The Synthesis Method of Uncertainty Analysis in Nuclear Reactor Thermal Design," *Nucl. Sci. Eng.*, **31**, 505 (1968).

The text following Eq. (9), p. 508, should read as follows:

let ϕ_i be the nominal power output of each segment, and let σ^2 be the variance of the normalized distribution of this power output for the most loaded characteristic length. Then the variance of θ is given by

The Editor has been informed that Ref. 1 is only now in press with publication expected in 1969.