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to 38 x 105 cm4/sec. They yield a corrected 
value of Xt equal to 2.62 ± 0.04 cm at a graphite 
density of 1.60 g/gm3, which can be compared 
with the value of 2.65 ± 0.03 cm obtained by 
pulsed-neutron methods with the same graphite. 
The effect of this correction upon the previously 
reported graphite absorption cross section of 
3.44 ± 0.08 mb1 is negligible since the correction 
is a minimum at long relaxation lengths. 

It appears that the transport mean free path of 
thermal neutrons in graphite as measured by the 
poison method is in agreement with the value 
obtained by the pulsed-neutron method, after due 
account is made for diffusion-cooling effects. 

Glenn A. Price 

Brookhaven National Laboratory 
Upton, New York 

Received September 13, 1963 

Degenerate Solutions to the Transport 
Equation With Anisotropic Scattering 

Following the work of Case,1 Mika2 has shown 
that a complete set of eigenfunctions to the one-
velocity transport equation for plane symmetry 
can be found when the scattering function may be 
expanded in a finite series of Legendre poly-
nomials. 

It may happen that some of the solutions to the 
homogeneous transport equation, corresponding to 
multiple order eigenvalues, are degenerate. In 
order to find the additional solutions necessary to 
complete the set of eigenfunctions, one has to take 
derivatives pf the degenerate eigenfunction with 
respect to the eigenvalue (cf. Eq. B.5, p. 425, of 
Reference 2). In particular, when the eigenvalue 
v0 is a root of order two, one solution is ipv0(x, V- )> 
while according to Equation B.5, a second solution 
is 

[e~x/v 0„Ox) l ( 1 ) 

It is the purpose of this note to point out that 
this procedure is not always valid for anisotropic 
scattering and to indicate where the difficulty 
arises for a particular case. For a nonabsorbing 
medium (c = 1) there is always a double root at 
infinity, and the second solution corresponding to 
this root, as given by Equation (1), is correct for 
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isotropic scattering, but incorrect for anisotropic 
scattering. 

For simplicity, consider the case of linear 
anisotropic scattering. Let L be the linear 
transport operator for this case. 

L = 1 + » T x - U l (2) 

where Si is the first-order scattering coefficient, 
which is equal to three times the mean cosine of 
the scattering angle in the laboratory system. The 
homogeneous transport equation with linear ani-
sotropic scattering may then be written as 

Lip(x,ii) = (1 + ju —)ip{x,ii) 

- f X i = 0. (3) 

We seek solutions to Equation (3) of the form 

ipv ) = e"x/v <pv(ii) (4) 

where, for the case the discrete eigen-
functions are 

cv 
[1 + ( l - c ) s i H . (5) 

2(v - ii) 

Operating on Equation (4) with L, one obtains 

C —x/v 

Lipv(x,id) = ^e (1 + sijuz/) A(v) (6) 

where 

A(v) = 1 - cv tanh"1 ^ - sxc(l - c)v2 (i> tanh"1 ^ - 1). 

(7) Since A(i^) = 0 is even in u, the roots occur 
in pairs. Let I and call the root having the 

smallest magnitude | 0 . Since A(?o) = 0, the 
solution corresponding to | = | 0 is the eigen-
function 

0 (8) 

We note that for 11 - c\ « 1, the root |o(c) 

to A (£ ) = 0 is given by u 
(3 - Si ) ( l - c) 

Hence, 

?c lim 
c—1 (3 - Sx )(1 - c) 

1 + 0(1-c ) . 

(9) 

|o = 0 is therefore a double root for c = 1. 
The eigenfunction corresponding to this root is 

given by Equation (8) in the limit as c ip0 = i , 
since lo^O as c~* 1 in the sense given by Equa-
tion (9). 
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As may be seen by direct substitution into 
Equation (3), the second discrete solution corres-
ponding to = 0 is given by 

ip = g 3 - Si -4 (10) 

But if one follows the procedure given by Equation 
(1), 

(x,n) = || [e~xti fy (jut)] 
«0 

and observing that when c = 1, not only is 

A(0) = 0, but also A(|)| 0. 

But 
lim 

c 

Thus, = is a solution only if Si = 0, 

i.e., only for isotropic scattering in the laboratory 
system. 

The appropriate modification of Equation (1) 
may be obtained by observing that for a constant A, 

Therefore, 

(11) l im 

which is not a valid solution. 
The difficulty is revealed by a more careful 

examination of Equation (6), which we rewrite as 

= (12) 

It follows that 

and ipo = ^ is indeed a solution to the transport 

Equation (3). 
A second solution is usually obtained by writing 

(13) 

c - 1 lo 3 - SI (i jUSi 

1 1 n = - 3 jusi + 3 I^Si = 0. 

Hence, the second solution for | = 0 is given by 

+ (14) 
?=0 3 - s i 

and not by Equations (1) or (11). With the addi-
tional term in Equation (14), the second solution 
becomes 

which agrees with the correct solution (10). 
For higher - order scattering, the procedure 

becomes more complicated. Further terms have 
to be added to Equation (14) to provide valid second 
solutions to the transport equation. 
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