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Letters to the Editors 

Dysprosium Resonance Integrals 

A value for the infinitely dilute absorption 
resonance integral of natural dysprosium, pre-
viously reported by us1, was found to be in 
substantial disagreement with several subsequent 
determinations. The former value of 1310 ± 220 6, 
obtained from the Reactivity Measurement Facility 
(RMF) and Advanced Reactivity Measurement 
Facility-I (ARMF-I ) measurements, has been 
changed to 1810 ± 440 b after correcting an inad-
vertent error in the calculations. This compares 
favorably with the tentative value of 1970 ± 180 
obtained from measurements made on a new set of 
samples in ARMF-I I where a several-fold in-
crease in sensitivity is realized. 

A further independent check on this value was 
obtained from measurements of the enriched 
dysprosium isotopes 160-164 which gave a value of 
1790 ± 120 b for natural dysprosium (neglecting 
the contributions of Dy-156 and Dy-158). Table I 
lists these values along with tentative experimen-
tal values for the isotopes, and the corresponding 
Breit-Wigner single-level values calculated from 
published parameters2. Relevant values reported 
elsewhere in the literature and compiled by 
McArthy, et al?, are for Dy-164, i.e., 420 ± 50 b 
and 482 ± 33 b by activation, and 406 b by a bound-
level calculation.3 

The values were obtained from reactivity 
measurements of samples under 0.020-inch-thick 
cadmium in the swimming pool type reactors, 
RMF, ARMF-I , and ARMF-II, at the MTR site. 

aAdded in proof: "More recently published ANL Reactor 
Constants Center Newsletter No. 10 gives ANL calculated 
values for Dy-161 of 947.8b; for Dy-162 of 2610.0b; for Dy-
163 of 1244.8b; for Dy-164 of 382.1b and for natural dys-
prosium of 1264.b." 

1 J. J. SCOVILLE, E. FAST, and D. W. KNIGHT, Trans. 
Am. Nucl. Soc. 5, 337-8 (1962). 

2D. J. HUGHES and R. B. SCHWARTZ, "Neutron Cross 
Sections/' BNL-325, 2nd ed. Brookhaven National Labora-
tory (1958). 

3A. E. McARTHY, et al., "Neutron Resonance Integral 
and Age Data," ANL Reactor Constants Center Newsletter 
No. 1, (1961). 

TABLE I 

Dysprosium Absorption Resonance Integrals (barns) 

Isotope Measured Calculated Remarks 

Natural 1810 ± 440 1240 RMF & ARMF-I 
M 1970 ± 180 ARMF-II 
it 1790 ± 120a 

Dy-160 1160 ± 130 none 
Dy-161 1670 ± 170 1044 
Dy-162 3320 ± 400 1284 
Dy-163 1960 ± 180 1236 
Dy-164 377 ± 34 1269 

aCompiled from measured isotopic values. 

The samples were hollow cylinders, 0.86 inches 
dia., 4.25 inches long and 0.030 inches wall thick-
ness, of Dy203 dispersed in aluminum in concen-
trations 1 to 10 per cent by weight. Gold specimens 
made and measured in a similar manner served 
as comparison standards. 

Final values for the above measurements as 
well as other measurements on dysprosium and its 
isotopes will be submitted for publication in the 
near future when the work is completed. 
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On the Validity of the Constant-Source 

Assumption for the Cell Problem 

One of the most common problems in reactor 
design is the calculation of the thermal-flux 
distribution in a fuel element and its associated 
moderator, i.e., the cell problem. The most 
accurate method available for this calculation is 
the two-dimensional, multigroup, integral trans-

400 
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port theory code, THERMOS, written by Honeck1. 
However, for repetitive design calculations a 
simpler and more economical (in computer time) 
computational scheme is required. A common 
practice is to use a monoenergetic treatment with 
a Wigner-Seitz (cylindrical) cell. This reduces 
the original problem with three independent varia-
bles (r, 6, E) to a much simpler one-dimensional 
(in r ) problem, plus a spectrum calculation to 
compute the one-group thermal cross sections. 

The source, due to slowing down, for the mono-
energetic problem is usually assumed uniform in 
the moderator and zero in the fuel. However, due 
to epithermal resonance absorption in the fuel, 
the epithermal flux, and thus the source to ther-
mal, will, in fact, be slightly depressed at the 
fuel/moderator interface relative to its magnitude 
at the cell edge. In this note we investigate the 
importance of this neglected effect on the cell 
disadvantage factor. A second effect which leads 
to a non-uniform slowing-down source, namely 
the non-uniform production of neutrons by fission, 
will be neglected in this analysis. Because of the 
very high energies at which fission neutrons are 
produced, this effect should be small compared to 
that of resonance absorption. Previous au-
thors2'3'4*5 have shown, using age theory, that if 
(47TT2/L2) is much greater than unity, then the 
slowing-down source is, in fact, spatially constant 
in the moderator. Here r is the neutron age from 
the lowest resonance (6.7 eV in U238 ) to thermal, 
and L is the lattice spacing. However, age theory 
does not apply to hydrogen moderation and the 
question arises as to the validity of the constant-
source assumption in water-moderated systems. 
One would expect that in the case of hydrogen 
moderation the source dip at the fuel/moderator 
interface would be most pronounced since neutrons 
can be thermalized from any energy in a single 
collision. Thus the epithermal flux dip at each 
resonance will directly contribute to the thermal-
source dip. We show, however, that for all practi-
cal water lattices the constant-source assumption 

introduces a negligible error in the cell disadvan-
tage factor. Before proceeding, we mention the 
work of Murray (reported in Reference 2) who has 
shown that the assumption of a constant source for 
a heavy-water lattice introduces a negligible error 
in the thermal utilization. However, several 
neutron collisions with deuterium are required to 
reduce the neutron energy from 6.7 eV (the lowest 
U238resonance) to thermal energies, and thus one 
cannot use Murray's conclusions for light-water 
lattices. 

Let us consider a simple, two-region slab 
lattice of fuel half-thickness xo and moderator 
half-thickness (xi - x0) centered at x = 0. We use 
slab geometry for simplicity, and also to avoid any 
possible contamination of our conclusions due to 
the Wigner-Seitz approximation. The source dip 
in a slab cell should form an overestimate of the 
source dip in a square cell (with cylindrical fuel 
element) if the distance between fuel slabs is equal 
to the distance between fuel rods, measured along 
the cell diagonal. For reasons which will shortly 
become obvious, we assume a chopped cosine 
source to the thermal group. For algebraic sim-
plicity, we set the thermal absorption cross 
section of the moderator equal to zero. Calcula-
tions not reported here indicate that this simplifi-
cation does not affect the conclusions. Assuming 
diffusion theory holds in the moderator, the 
equation we must then solve for the thermal flux 
in the moderator is 

d2&(x) 
dx2 

4 cos (1) 

XH. C. HONECK, "The Calculation of the Thermal 
Utilization and Disadvantage Factor in Uranium Water 
Lattices," IAEA Conference on Light Water Lattices, 
Vienna (June, 1962). 

2A. M. WEINBERG and E. P. WIGNER, The Physical 
Theory of Neutron Chain Reactors, p. 617, p. 648. University 
of Chicago Press, Chicago, (1958). 

3W. A. HORNING, " A Summary of Small Source Theory 
Applied to Thermal Reactors", HW-34021, Hanford (1954). 

4A. D. GALANIN, "The Thermal Coefficient in a 
Heterogeneous Reactor", Proceedings of the International 
Conference on the Peaceful Uses of Atomic Energy, Vol. 5, 
United Nations, New York (1955). 

5J. R. WORDEN, "Two-Group, Small Source Theory 
Applied to an Infinite Array of Reactor Super-Lattices", 
HW-63072, Hanford (1960). 

where $(x) is the thermal flux in the moderator, D 
is the thermal diffusion coefficient of the modera-
tor, S is the constant indicating the magnitude of 
the thermal group source, and A is a constant 
governing the curvature of the thermal-group 
source. At x = x± one applies the usual cell con-
dition that d&{x)/dx vanish. The fuel region is 
treated by blackness theory—i.e., an appropriate 
linear extrapolation distance is applied at the 
moderator/fuel interface, according to 

J(xo) = _ 1 

®(x0) r~ 
(2) 

where J(x) is the neutron current according to 
Fick's Law, 

, (3) 
dx 

and T is a prescribed number characteristic of the 
fuel region and entering angular flux distribution 
into the fuel region. The solution for the disadvan-
tage factor, 6 , defined as the ratio of the average 
moderator flux to the average fuel flux, is, with 
D = l/3Z t r , 
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S Xo a 0 r + 3£tr (x\ -Xo) (—n 

\A 

cot A } 
, (4) 

where £tr is the macroscopic transport cross sec-
tion of the moderator and T,ao is the macroscopic 
absorption cross section of the fuel. In the limit 
of A = 0 (flat source), Eq. (4) reduces to the 
familiar result 

6(A = 0) = Sao [ r + £ t r (*i - *o ) ] (5) 

We now define the error in 6 arising from the 
flat-source assumption as 

6 - 6(A = 0) 
6 6 (A = 0) ' 

Using Eqs. (4) and (5) in Eq. (6), we find 

(6) 

J 1 cot A 1 

(7) 

1 + 
Etr {xi - Xo) 

We note from Eq. (7) that, for a given size cell and 
value of A, the error is a maximum when T is a 
minimum. The smallest possible value f o r r 
occurs if the fuel slab is a semi-infinite, purely 
absorbing medium. From the Milne problem, we 
know 

r m i n = (3) (0.7104) = 2.13. (8) 

So as not to underestimate the effect of a non-
uniform source, we shall use this minimum value 
of r in our subsequent numerical calculations. 

Let us now compute the spatial dependence of 
the slowing-down source by considering the epi-
thermal space-energy problem. We assume 
diffusion theory in the moderator with P0 energy 
transfer only. P i energy transfer is corrected 
for by the introduction of the transport cross 
section, atr = or/3 for hydrogen. We neglect mod-
erator absorption and oxygen slowing down and 
take the source of neutrons to be at infinite energy. 
We further assume that the collision cross section 
of hydrogen is independent of energy. Thus the 
equation we must solve for the epithermal moder-
ator flux is 

_ a ^ X } E ) + f - o _ t H X ) E , ) d E , m 0 > ( 9 ) 
CIX 

where 

d = 
1_ 
a 

Lower-case symbols in Eqs. (9) and (10) refer to 
the same quantities epithermally as did the corre-
sponding upper-case symbols thermally. At x = xi 
one applies the usual cell condition that 
d(f>(x,E)/dx = 0. Assuming no slowing down in the 
fuel, this region can also be treated epithermally 
by blackness theory, i.e., 

(11) j(x0,E) 
<l>(xo,E) <{E) 

In general, Eq. (9) cannot be solved exactly with 
Eq. (11) as the boundary condition. However, if 
y(J5,)is energy independent, Eq. (9) is easily solved 
by separation of variables. In view of this, let us 
grossly overestimate the epithermal absorption, 
and thus the epithermal flux dip, by replacing the 
fuel epithermally by a semi-infinite, purely ab-
sorbing medium for all energies. Then y{E) is 
equal to 2.13, the smallest possible value. This 
replacement, which may at first glance seem 
drastic, will nevertheless allow us to conclude 
that, for practical water lattices, the constant-
source assumption introduces negligible error in 
the cell disadvantage factor. 

Separating variables in Eq. (9) with y(E) = y, a 
constant, yields 

<p(x,E)= C [cos (Bo{xi - x))] 
.(1/1 + B2) , (12) 

where C is a normalization constant and B satisfies 
the eigenvalue equation 

B t an ( B O ( X I - tfo)) = — . (13) 

Thus, the slowing-down source to thermal is given 
by 

S ( x ) = S c o s (BO{XI - * ) ) , (14) 

where S is a normalization constant. Comparison 
of Eqs. (1) and (14) shows that 

A = Ba{xi - Xo) • (15) 

Let us define the ratio of the epithermal collision 
cross section to the thermal transport cross sec-
tion as /, i.e., 

/ = o / 2 t r . (16) 

With Eqs. (15) and (16) the eigenvalue equation can 
be rewritten as 

(10) / 2tr(*i - Xo) = yA tan A. (17) 
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Setting y = 2.13 (so as to maximize the source dip) 
and T= 2.13 (so as to maximize the error for a 
given source dip), and eliminating Ztr (xi -x0) 
between Eqs. (7) and (17) yields 

= 3(tan A -A) - A2 tan A (jq) 
A2 tan A + Af 

The largest value of A possible is A = ir/2, which 
corresponds to zero source at the moderator/fuel 
interface. In this limit, we find e = 0.216, an ap-
preciable error. As A approaches zero, e ap-
proaches A4/15/. Thus in this limit the error as a 
function of A approaches zero extremely rapidly. 

To see more clearly the effect of the various 
parameters on the error, we expand Eqs. (17) and 
(18) for small A. Eliminating A between the two 
expanded equations yields 

€ = ^ 2 - s*. {xi-xo)2 . (19) 

We note that the error is proportional to the 
square of the cell size for small cells (for which 
Eq. (19) is valid). 

For the purpose of making numerical compari-
sons, we need to assign values to /, y, and Str . 
An experimental value for S t r for cold water is 
Ztr = 2.35 cm"1 (Ref. 6) which corresponds to a 
microscopic transport cross section for water of 
70 barns. For a, the macroscopic epithermal col-
lision cross section, a proper choice would be an 
energy-averaged value over the resonance-energy 
region. So as not to underestimate e, we take the 
the microscopic collision cross section of hydro-
gen as 21 barns, the largest value in the resonance 
region (corresponding to E = 6.7 eV). There is 
some question whether or not to include the oxygen 
cross section in the calculation of a. Since the 
oxygen slowing down was neglected in the analysis, 
a consistent treatment would be not to include it 
here. However, we shall include oxygen scattering 
of 4 barns to assure ourselves that we are not 
underestimating the error. The above discussion 
then leads to an epithermal microscopic collision 
cross section for water of 46 barns and thus/ = 
0.66. For reasons already mentioned, we set y = 
2.13. 

Let us now compute the error from Eqs. (17) 
and (18) for typical light-water cells. From the 
published data7 on Dresden (boiling-water reactor) 
one can compute 0.676 cm as the distance from the 

6S. GLASSTONE and M. C. EDLUND, The Elements of 
Nuclear Reactor Theory, p. 127. D. Van Nostrand, New 
York, (1952). 

7F. A. HOLLENBACK, Nucleonics, 17, No. 12, 65-75 
(1959). 

cell boundary to the surface of the fuel/clad as -
sembly measured along the diagonal of the cell. 
The analogous figure8 for Yankee (pressurized-
water reactor) is 0.325 cm. With E t r ( * i - * o ) = 
(0.676) (2.35) = 1.59, Eqs. (17) and (18) yield e = 
0.0124. The error for the Yankee cell is much 
less (about a factor of four) due to its smaller size. 
Thus our analysis shows that, for typical water 
lattices, an overestimate of the error in the dis-
advantage factor due to the assumption of a 
spatially constant source is of the order of one 
percent, which results in afew tenths percent error 
in the thermal utilization (and thus the reactivity). 

An error of a few tenths percent in the utiliza-
tion is small from a design standpoint due to other 
errors which are implicit (and more significant) in 
a design cell calculation (Wigner-Seitz approxima-
tion, basic cross-section data, separability of 
space and energy, etc.). Thus we conclude that, 
for design calculations of practical light-water 
systems, the assumption of a spatially constant 
slowing-down source in the moderator introduces 
a small error in the calculated reactivity. Further, 
since our analysis has grossly overestimated the 
error in the disadvantage factor, one would suppose 
that the actual error in the thermal utilization is 
probably an order of magnitude less than that 
calculated here (of the order of hundredths of a 
percent). Said another way, the actual error in the 
utilization is probably negligibly small for cells 
that are much larger than those used in practical 
light-water reactors. 

As a final note, let us compute the source de-
pression at the fuel/moderator interface relative 
to the source strength at the cell edge for the 
Dresden cell. We find 

S{xi) - S{x0) = o#203. (20) 
S(x i) 

We see that a relatively large source dip leads to 
a small error in the cell disadvantage factor. 
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