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In Eq. (4), we must add the prescription that doubly 
Cauchy integrals (which will appear when operating 
with Eq. (4)) are to be evaluated by interchange of 
integration order without regard to the dictates of 
the Bertrand-Poincare , transformation. Thus, in 
using Eq. (4), one must employ the definition 
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where F( \i,v) satisfies a Holder condition in the 
interval (-1,+1). Of course, Eq. (5) is in conflict 
with the Bertrand-Poincare' formula5 
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Using the closure condition of Eq. (4) in Eq. (3) 
we note that A(ju,jLio) = 0 and thus previous results 
are in agreement with Eq. (3). We also note that 
the closure condition is intimately linked with the 
term representing the uncollided flux. This is to 
be expected since the unusual functional properties 
of the angular Green's function are found in the 
uncollided term. 

It is not difficult to find a closure condition for 
the function set {<p(±L, /i), } that satisfies 
the 'ordinary' rules of integration as expressed in 
Eq. (6). The result is 
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where A( ju) is given in Ref. 2. Using Eq. (7) in 
Eq. (3) yields the angular Green's function 
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With this functional we need not include any added 
prescriptions such as the rule of Eq. (5). 

Let us also point out that one can approach the 
problem of determining the angular Green's func-
tion by considering a distributed source of the 
form S(iu)6(x), where S(fi) satisfies a Holder 
condition in the interval (-1,+1). The solution is 
put in the form 

*(x,id) = f +1 S(ido)*G(x,ii;iJ.o)diJ.o. (9) 

If the rules of integrating Cauchy singular func-
tions are followed (esp. Eq. (6)), then the Green's 
function which results is that given by Eq. (8). 

In conclusion, we note that the angular Green's 
functions which appear in the literature require a 
further prescription (as given in Eq. (5)) and that 
these necessary rules are in conflict with the usual 
Cauchy principal-value integration procedure. We 
have presented here an alternate form for the 
angular Green's function, and associated closure 
condition, which is not burdened by these added, 
and somewhat confusing, rules. 
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A Simple Estimate of the Effects of 
Resonance Interference* 

The accurate computation of capture in reso-
nances shows that when resonances occur close 
together there may be a sizeable effect on the 
capture rate because of flux perturbations1*2. 
While an accurate computation is a formidable 
problem, there are some conditions which a) occur 
reasonably often, and b) admit a simple approxi-
mate answer. 

Suppose there are two resonances, labeled I and 
II, close together. Further assume that by reason 
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of nuclide abundance or level parameters, reso-
nance I dominates the shape of the flux near the 
resonant energy. Then a simple estimate of the 
capture rate in resonance II may be obtained by 
integrating the capture cross section from reso-
nance II times the flux determined by the presence 
of resonance I in the absence of resonance II. 

The procedure is to express the capture cross 
section in resonance II in terms of the line shape 
of resonance I and a modifying function. We use 
unbroadened line shapes and expand in the 
difference xi - x22, where Xi - 2(E-Eri)/Ti\ E\ri is 
the resonance energy and T{ is the total width. 

For the flux we use the intermediate represen-
tation of Goldstein and Cohen3 and introduce their 
parameter (3̂  given by 
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where 

the resonance parameters are those of the 
dominant resonance (I) 

(T0 is the peak cross section of resonance I, 

s is the effective moderator scattering per 
atom of type I 

op is the total potential scattering per atom of 
type I 

A is the intermediate representation param-
eter. 

Performing the integration by a contour inte-
gral3 

R I 2 2 Er 
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where RI2 is the resonance integral for the second 
resonance 
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we find 
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where/o,2 is the infinite-dilution resonance inte-
gral. 

a Suggested by E . Pennington, ANL . The contour lies 
in the upper half plane. 

3R. GOLDSTEIN and E. R. COHEN, "Theory of Reso-
nance Absorption of Neutrons,'' Nucl. Sci. Eng., 13, 132-
140 (1962). 

Consider as an example a mixture of H:U238 = 1 
and estimate the depression in the response of a 
gold foil from the interference between the 6.68 eV 
resonance of U238 and the 4.91 eV resonance in 
gold. We have for resonance I: 

Ex = 6.68 eV 

Ob = 2.192 X 104 barns 

Ti = 0.0264 eV 

as = 20 barns 

A = 0 

fix- 954. 

For resonance II: 
E2 = 4.91 eV 
r 2 = 0.1406 eV. 

R I 2 =0.69; the largest part By substitution we find j 
-to,2 

of the ratio, 0.734, comes from the term E2/E\. It 
may be fairly argued that the ratio E2/EX should be 
omitted, since it comes from neglecting the 1 / E 
dependence of the flux. In fact, if we put = 1 (no 
resonance flux depression) we find RI2/lo,2 given 
by: RI2/lo?2 = E2/EH. We therefore suggest modi-
fying the formula given above by dropping the ratio 
E2/EI. When this is done for the example cited, 
Rh/lo,2 = 0.94. An exact calculation1 gives a value 
of 0.92 for this ratio. 
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Resonance Integrals for U 
and Th232 Capture 

233 Fission 

The resonance integrals for U233 fission and 
Th232 capture have been measured relative to the 
resonance capture integral of Au197 by means of 
the cadmium-ratio-activation technique1. Dilute 
detector foils were irradiated in an 11.5 cm diam 
water hole at the center of the TRX critical facil-
ity1. The TUX is a water-moderated lattice of 
cylindrical, slightly enriched uranium metal and 
U02 fuel rods. The epithermal flux spectrum in 
the water hole was approximately proportional to 
1/E except for the flux peak above 25 keV. 

Figure 1 shows the disc-shaped cadmium box. 
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