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where Cio is the initial delayed-emitter concen-
tration and Q characterizes the external neutron 
source. The other symbols have their usual 
meaning. 

This reactivity function has been used2 in defin-
ing the equivalent transfer functions of a reactor 
for both the critical state and the sub- and super-
critical state in dependence on the value a. The 
nonlinear effects (the influence of the amplitude A) 
and the conditions for using the above-mentioned 
transfer functions have been also evaluated. 
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On the Green's Function of 
Monoenergetic Neutron 

Transport Theory* 

In recent years several authors (Refs. 1, 2, 3 
among others) have used the normal mode approach 
to the solution of the monoenergetic neutron trans-
port equation. Each author has presented a devel-
opment of the angular Green's function. We shall 
illuminate here several misleading aspects which 
are generated by these previous discussions. 

For the sake of brevity, let us consider the case 
of isotropic scattering in a medium with plane 
symmetry. In the notation of Ref. 2, the neutron 
flux resulting from the 'monodirectionaT source 
6(jLt - ju0) 8(x) is given by 

r Jo M(v) 
~x/v 

dv, x > 0 

It should be noted that pt(x) has no unusual func-
tional properties since the uncollided neutron con-
tribution does not appear as a 5 distribution. 
Thus, it is not surprising that Eq. (1) is consistent 
with previously published results based on a nor-
mal mode expansion. However, Eq. (1) can be 
derived using the elementary methods of Ref. 4. 

Using Eq. (1) we can determine the angular 
Green's function (i.e. the angular flux resulting 
from the present source) via the relation 

*G(x,(j.;no) 
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where 0) is the uncollided angular flux 
and c is the scattering probability. It is a 
straightforward matter to reduce Eq. (2) to the 
form 
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and h{ 11) is the unit step function (i.e., h( 11) = 0, 
\i < 0, and h(n) = 1, 1u ^>0). 

The previously reported angular Green's func-
tions have taken the form of Eq. (3) but with 
A(ju,/i0) = 0- Essentially, these previous develop-
ments are based on the closure condition for the 
function set {</>(±L, M), , 
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In Eq. (4), we must add the prescription that doubly 
Cauchy integrals (which will appear when operating 
with Eq. (4)) are to be evaluated by interchange of 
integration order without regard to the dictates of 
the Bertrand-Poincare , transformation. Thus, in 
using Eq. (4), one must employ the definition 

J-iU-tlJ-1 V - \1 J-1 J-1 {v- IJL)(y JLt) 

(5) 

where F( \i,v) satisfies a Holder condition in the 
interval (-1,+1). Of course, Eq. (5) is in conflict 
with the Bertrand-Poincare' formula5 

r+i d\i r+1 F( jil,V') 
J-1 V - fJL j-1 V1 - fJL 
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Using the closure condition of Eq. (4) in Eq. (3) 
we note that A(ju,jLio) = 0 and thus previous results 
are in agreement with Eq. (3). We also note that 
the closure condition is intimately linked with the 
term representing the uncollided flux. This is to 
be expected since the unusual functional properties 
of the angular Green's function are found in the 
uncollided term. 

It is not difficult to find a closure condition for 
the function set {<p(±L, /i), } that satisfies 
the 'ordinary' rules of integration as expressed in 
Eq. (6). The result is 

n 2 l 2 ( n h ( n ( / A _ i i i i ^ ^ M l ^ U ^ ' ) + 
M(n) " ^ j M+ 
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M_ 
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where A( ju) is given in Ref. 2. Using Eq. (7) in 
Eq. (3) yields the angular Green's function 
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With this functional we need not include any added 
prescriptions such as the rule of Eq. (5). 

Let us also point out that one can approach the 
problem of determining the angular Green's func-
tion by considering a distributed source of the 
form S(iu)6(x), where S(fi) satisfies a Holder 
condition in the interval (-1,+1). The solution is 
put in the form 

*(x,id) = f +1 S(ido)*G(x,ii;iJ.o)diJ.o. (9) 

If the rules of integrating Cauchy singular func-
tions are followed (esp. Eq. (6)), then the Green's 
function which results is that given by Eq. (8). 

In conclusion, we note that the angular Green's 
functions which appear in the literature require a 
further prescription (as given in Eq. (5)) and that 
these necessary rules are in conflict with the usual 
Cauchy principal-value integration procedure. We 
have presented here an alternate form for the 
angular Green's function, and associated closure 
condition, which is not burdened by these added, 
and somewhat confusing, rules. 
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A Simple Estimate of the Effects of 
Resonance Interference* 

The accurate computation of capture in reso-
nances shows that when resonances occur close 
together there may be a sizeable effect on the 
capture rate because of flux perturbations1*2. 
While an accurate computation is a formidable 
problem, there are some conditions which a) occur 
reasonably often, and b) admit a simple approxi-
mate answer. 

Suppose there are two resonances, labeled I and 
II, close together. Further assume that by reason 
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