
115 LETTERS TO THE EDITORS 

T A B L E I 

Excursions after Step Reactivity Insertions 

Starting at Shut Down Starting at Operating 
Power and Temperature 

Relative 
Difference 

in Tmax 

Po 
( / 3 = 0 . 0 0 7 4 ) 

wmax 
(kW) 

rp a 
1 max 
(°c) ^max 

max 
n0 

rp b 
1 max % 

1 0 " 2 6 7 6 0 2 0 6 9 6 0 33.8 2 5 . 7 2 2 . 5 

1 . 5 X 1 0 " 2 5 7 8 0 0 3 0 5 8 0 0 0 2 8 9 3 4 . 3 1 2 . 5 

2 . 0 X 1 0 " 2 1 5 9 0 0 0 4 0 1 5 9 2 0 0 7 9 5 4 3 . 4 7 . 8 

aIncrease over room temperature. 
bIncrease over operating temperature. 

kW-sec(deg C)"1 (heat capacity) and n0 = 200 kW. 
It must be recalled1 that when B= p0-(3 > 0 is not 
large enough, the peak power calculated using Eq. 
(5) is no longer adequate. However, the final 
(maximum) temperature reached in the excursion 
is always given by Eq. (4), and the difference in 
the values of Tmax calculated using Eqs. (4) and 
(4a) becomes very large. 
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Comparisons of Exact and SN 
Solutions of the Monoenergetic 

Critical Equation with 
Anisotropic Scattering 

One of the useful applications of the method of 
singular integral equations1'2'3 is to provide exact 
solutions of the Boltzmann transport equation 
against which numerical code solutions can be 
compared. We have made such a comparison by 
calculating the critical thickness of a plane homo-
geneous slab in the monoenergetic approximation, 
considering the transport equation 

*A. L E O N A R D and T. W. MULLIKIN , J . Math. Phys., 5, 
399, (1964). 

2G. J. MITSIS, "T ranspor t Solutions to the Monoener-
getic Crit ical P rob lems , " Argonne National Laboratory 
Report ANL-6787, (1963). 

3K. M. CASE, Ann. Phys., (N. Y.) 9, 1, (1960). 
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subject to the boundary conditions 

t/2,ju) = 0 jit < 0 

*(-t/2,/i) = 0 M > 0. ( 2 ) 

In Eq. (1) the anisotropic scatterer is represented 
by a three-term Legendre expansion in a form that 
maintains the anisotropic-scattering cross section 
as a separate free parameter. Truncation of the 
expansion is justified either on the grounds that 
the expansion coefficients become small or on the 
grounds that the angular flux is relatively iso-
tropic. We have solved Eqs. (1) and (2) for several 
values of the secondaries ratio c + cr where c is 
the anisotropic-scattering ratio 

c = s r i S 7 s , (3) 

and c' is the isotropic secondaries ratio 

= (4) 

For each value of c + cr we have varied c to ob-
serve the effect of increasing anisotropy of scat-
tering. For the purpose of calculation the bn of 
elastic hydrogen scattering were used (b0 = 1, 
bi = 1 , b2 = \ but no restriction on the calcula-
tions is implied as long as the truncation is justi-
fied. For elastic hydrogen scattering b3 = 0 and 
&4 = - A- For these coefficients no appreciable 
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difference between three- and five-term Legendre 
expansions is observed when discrete eigenvalues 
are computed4. However, the scattering is aniso-
tropic enough to give different calculated values of 
the critical half-thickness when a Pi or two-term 
and a P2 or three-term scattering expansion is 
used. 

Exact solutions were obtained by using the re-
sults of Ref. 1 in which the critical problem for an 
anisotropically scattering slab is discussed. For 
detailed results and definitions of the following, the 
reader is referred to this paper. 

As it was shown there explicitly for isotropic 
and linearly anisotropic scattering, one can reduce 
the criticality search for the present problem to 
the following iteration procedure for the critical 
thickness, r: 

r„ = 7T \v0 I - 2z0 - R(rn_1) 

n = 0 , 1 , . . . , R{r.I) ^ 0, ( 5 ) 

where 

vQ is the discrete eigenvalue of the Boltzmann 
equation 

z0 is the Milne extrapolation distance appro-
priate to anisotropic scattering 

R is a correction term; 

in addition to terms which are r-independent, R 
contains functionals of two functions g ± ( a , r ) which 
satisfy the Fredholm equations 

g+(cr,T ) = + e x p ( - r / c r ) f1 K(a, i>)g+{ v, j)dv + 
JQ 

+ aN(-o)exv(-T/a) (6) 

g~(v,T) = - e x p ( - r / c r ) f1 K(a, v)g-(v,r)dv + 

+ crN(-v ) e x p ( - r / a ) , (7) 

where K has uniform norm (= max f1 lK(v, v)\dv) 
{0<cr<l} J ° 

less than one so that Eqs. (6) and(7) may be solved 
by iteration with a maximum error of 0(e~Nr) in 
the N'th iteration. For each iteration indicated by 
Eq. (5), iterative solutions of Eqs. (6) and (7) are 
therefore required. 

Since v0 is the zero of a certain transcendental 
function, depending upon the order of anisotropic 
scattering4 , a simple zero-finder routine with a 
convergence criterion of 10"8 was used. The ex-
trapolation distance, z0, and other r-independent 
constants appearing in Ry however, are composed 
of integrals over [0 ,1 ] . An extremely accurate 

4K. D. LATHROP, "Anisotropic Scattering Approxima-
tions in the Boltzmann Transport Equation,'' Los Alamos 
Scientific Laboratory Report LA-3051, (1964). 

Adams-Moulton integration scheme was used for 
these calculations. A truncation error of less than 
10"8 at each step was specified. The equations for 

g± were iterated using fifth-order Romberg5 inte-
gration with 129 grid points. The iteration of these 
equations was terminated after the maximum ab-
solute difference between two consecutive iterates 
was less than 10~8. The only remaining computa-
tion in which extreme care might have been 
required was in the calculation of the 129 tabular 
values of the function N(-cr), each one requiring 
an integration over [0 ,1] . At first the Adams-
Moulton scheme was used to obtain high accuracy. 
Subsequently, it was found that Romberg integra-
tion was sufficiently accurate since N{-or) arises 
only in the computation of g±, which in turn ap-
pear only in the correction term R(r). 

Finally, the iteration indicated by Eq. (5) was 
continued until two consecutive values of r dif-
fered by less than 10~6. 

Comparison solutions were obtained using the 
DTF transport code6, modified to allow up to ten-
term Legendre scattering expansions in slabs or 
spheres. The DTF code is a discrete-ordinates 
code in which the boundary condition (2) is re-
placed by 

M t/2,/iy) = 0 Hj < 0 

(8) 
M-t/2,Hj) = 0 jULy > 0, 

where |Liy are the discrete directions chosen for 
the angular quadrature of Eq. (1). A DP7 quad-
rature was used and in the actual calculation a 
reflective-center boundary condition 

* ( 0 ' ^ + 1 - / ) = * ( 0 ' ^ > i = i ' 2 ' - • • > » / 2 <9) 

was used. Here h — 16 and the 16 iiij are the 
abscissae for DP7 quadrature on [ -1 ,1] . Seventy-
five spatial intervals were used on the interval 
[0 ,^/2] , with the first 73 intervals equal and the 
last two spaced by x74 = 4.95, x75 = 4.99 and x76 = 
5.00 (with t/2 = 5.00). The DTF code searches for 
the critical half-thickness by computing k for a 
succession of outer boundaries starting from a 
guessed value and a first modification. A conver-
gence criterion on the multiplication, k, (and on 
the spatial flux) of 10"6 was used. 

The Legendre polynomials are generated recur-
sively by the code and evaluated at discrete \i = 
Legendre moments of the flux are computed by 
quadrature 

5E. L. STIEFEL, An Introduction to Numerical Mathe-
matics, Academic Press, New York, (1963), p. 149. 

*B. G. CARLSON, W. J. WORLTON, W. GUBER and M. 
SHAPIRO, " D T F Users Manual,M United Nuclear Corpora-
tion Report UNC Phys/Math-3321 (Two Volumes),(1963). 
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and the anisotropic components are given by cbi 
and cb2-

The results of the exact and DTF calculations 
are compared in Table I. In all cases the agree-
ment is so good that an analysis of the difference 
is probably not meaningful. Note, however, that 
for two P2 cases, c + cr = 1.3 and 1.4 with c = 
0.9, the exact and end-point values are not given. 
For these cases there are two discrete eigen-
values of the Boltzmann equation, leading to addi-
tional complexities in the computation which can-
not be handled by the present program used for 
exact solution. The table also includes the value, 
used as the first approximation in the exact calcu-
lation (see Eq. (5)), from the end-point formula 

T / 2 = TTI^OI/2 - . ( 1 2 ) 

The agreement of these values with the exact 
values establishes the accuracy of the end-point 
approximation for anisotropic scattering. 

The corresponding values of the Milne extrapo-

T A B L E I 

Slab Cr it ical Half-Thickness (mean free path) 

c + cf = 1 . 0 5 

c PI(DTF) P i (Exact) Pi(End-point) P2(DTF) P2(Exact) P2 (End-point) 

0 . 1 3 . 3 9 2 2 5 3 . 3 9 2 1 6 3 . 3 9 2 1 6 3 . 3 9 0 4 2 3 . 3 9 0 3 2 3 . 3 9 0 3 2 
0 . 3 3 . 6 0 3 5 6 3 . 6 0 3 4 6 3 . 6 0 3 4 6 3 . 5 9 7 2 4 3 . 5 9 7 1 4 3 . 5 9 7 1 4 
0 . 5 3 . 8 6 3 6 8 3 . 8 6 3 5 8 3 . 8 6 3 5 8 3 . 8 5 1 3 5 3 . 8 5 1 2 6 3 . 8 5 1 2 6 
0 . 7 4 . 1 9 5 6 8 4 . 1 9 5 5 8 4 . 1 9 5 5 8 4 . 1 7 5 0 6 4 . 1 7 4 9 5 4 . 1 7 4 9 5 
0 . 9 4 . 6 4 2 1 2 4 . 6 4 2 0 3 4 . 6 4 2 0 3 4 . 6 0 9 3 5 4 . 6 0 9 2 7 4 . 6 0 9 2 7 

c + c' = 1 . 1 

0 . 1 2 . 1 6 5 2 4 2 . 1 6 5 1 9 2 . 1 6 5 2 5 2 . 1 6 3 1 1 2 . 1 6 3 0 6 2 . 1 6 3 1 3 
0 . 3 2 . 2 8 2 9 0 2 . 2 8 2 8 5 2 . 2 8 2 9 1 2 . 2 7 5 5 8 2 . 2 7 5 5 3 2 . 2 7 5 5 9 
0 . 5 2 . 4 2 4 5 2 2 . 4 2 4 4 7 2 . 4 2 4 5 2 2 . 4 1 0 3 1 2 . 4 1 0 2 6 2 . 4 1 0 3 3 
0 . 7 2 . 5 9 9 9 9 2 . 5 9 9 9 4 2 . 5 9 9 9 8 2 . 5 7 6 3 7 2 . 5 7 6 3 2 2 . 5 7 6 3 9 
0 . 9 2 . 8 2 6 2 9 2 . 8 2 6 2 5 2 . 8 2 6 2 8 2 . 7 8 9 2 3 2 . 7 8 9 1 7 2 . 7 8 9 2 4 

c + c' = 1 . 2 

0 . 1 1 . 3 1 5 2 1 1 . 3 1 5 1 9 1 . 3 1 5 6 7 1 . 3 1 2 9 9 1 . 3 1 2 9 6 1 . 3 1 3 4 7 
0 . 3 1 . 3 7 2 5 6 1 . 3 7 2 5 4 1 . 3 7 3 0 8 1 . 3 6 4 9 8 1 . 3 6 4 9 6 1 . 3 6 5 5 8 
0 . 5 1 . 4 3 9 3 9 1 . 4 3 9 3 5 1 . 4 3 9 9 7 1 . 4 2 4 8 6 1 . 4 2 4 8 4 1 . 4 2 5 6 1 
0 . 7 1 . 5 1 8 8 4 1 . 5 1 8 8 2 1 . 5 1 9 4 8 1 . 4 9 5 0 6 1 . 4 9 5 0 5 1 . 4 9 6 0 4 
0 . 9 1 . 6 1 5 7 6 1 . 6 1 5 7 5 1 . 6 1 6 4 6 1 . 5 7 9 3 0 1 . 5 7 9 2 9 1 . 5 8 0 6 1 

c + c' = 1 . 3 

0 . 1 0 . 9 5 3 5 4 0 . 9 5 3 5 2 0 . 9 5 4 7 3 0 . 9 5 1 4 2 0 . 9 5 1 4 0 0 . 9 5 2 6 6 
0 . 3 0 . 9 8 8 1 1 0 . 9 8 8 1 0 0 . 9 8 9 5 5 0 . 9 8 0 9 8 0 . 9 8 0 9 6 0 . 9 8 2 6 2 
0 . 5 1 . 0 2 7 4 7 1 . 0 2 7 4 6 1 . 0 2 9 2 2 1 . 0 1 3 9 8 1 . 0 1 3 9 9 1 . 0 1 6 2 1 
0 . 7 1 . 0 7 2 9 2 1 . 0 7 2 9 1 1 . 0 7 5 0 7 1 . 0 5 1 2 3 1 . 0 5 1 2 7 1 . 0 5 4 3 9 
0 . 9 1 . 1 2 6 3 6 1 . 1 2 6 3 5 1 . 1 2 9 0 3 1 . 0 9 3 8 2 a a 

c + c' = 1 . 4 

0 . 1 0 . 7 4 7 2 6 0 . 7 4 7 2 7 0 . 7 4 9 3 0 0 . 7 4 5 3 2 0 . 7 4 5 2 9 0 . 7 4 7 4 3 
0 . 3 0 . 7 7 0 3 1 0 . 7 7 0 3 2 0 . 7 7 2 8 8 0 . 7 6 3 8 1 0 . 7 6 3 7 8 0 . 7 6 6 6 9 
0 . 5 0 . 7 9 6 0 7 0 . 7 9 6 0 6 0 . 7 9 9 3 6 0 . 7 8 3 9 3 0 . 7 8 3 9 6 0 . 7 8 8 0 0 
0 . 7 0 . 8 2 5 1 9 0 . 8 2 5 1 9 0 . 8 2 9 4 8 0 . 8 0 5 9 5 0 . 8 0 6 1 0 0 . 8 1 1 9 9 
0 . 9 0 . 8 5 8 5 3 0 . 8 5 8 5 3 0 . 8 6 4 2 4 0 . 8 3 0 2 2 a a 

16 

= ^ Y 1 E ^ P J ^ m ^ ^ h (10) 
7 = 1 

where the Wj are the weights associated with the 
quadrature, here Z)P7. Since the Pn are poly-
nomials, integrals of the applicable Pn them-
selves are exact (neglecting round-off) with DP7 
quadrature. 

For the actual cross sections entered in the 
code it was assumed that E, = 1.0, that all ab-
sorption was due to Z/ and that v = 2.5. Then 

E* = 2(c + c ' - l ) / 3 

vXf = 5(c + c' - l ) / 3 ( n ) 

S , = 1.0 

s r = [5 - 2(c + c')] / 3 , 

a Not calculable by present exact program due to the appearance of a second discrete eigenvalue. 
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lation distance, z0, as calculated from the exact 
analysis are given in Table II. 

We feel that the type of comparison made above 
is important in verifying the accuracy of any nu-
merical code that solves the transport equation. 
For the DTF code, the handling of the boundary 
conditions, the eigenvalue search, and the linear 
and P 2 scattering options is apparently accurate. 
Although no information is obtained about material 
spatial variation or multigroup treatment, such 
comparisons can be made, albeit with very com-
plicated exact solutions. The table provides solu-
tions against which other codes can be compared, 
and in addition contains useful information about 
the behavior of critical thickness for anisotropic 
scattering. Even for the simple monoenergetic, 
homogeneous case, additional meaningful com-
parisons can be made. Exact solutions for critical 
radii for one-dimensional spheres can be obtained 
with relatively minor changes in the slab critical 
equation, and such solutions could be used to ex-
amine the treatment of ray-to-ray transfers 
(streaming) in curved geometry. Mitsis2 has given 
an exact critical equation for cylindrical geometry, 
solutions to which could be used to investigate the 

accuracy of two-dimensional angular quadrature. 
Although, in themselves, such comparisons verify 
only parts of ofttimes extremely complex codes, 
they provide the foundation upon which confident 
numerical computing can be based. 
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A Note on the Inverse 
Kinetics Analysis 

In their article1 Murray, Bingham and Martin 
have presented some solutions of the reactor 
kinetics equations for the reactivity variation re -
quired to achieve specified power responses. They 
show the usefulness of such an inverse method and 
demonstrate it by several examples. It is felt that 
an important case could be added to the list of 
power functions considered in the above-mentioned 
paper. 

For the reactor power function of the type 

n - no exp (at) (1 +A sinco /) 
the corresponding reactivity function can be found 
by solving reactor point kinetics equations. This 
is 

P = + P \ * i U ) * < * 
V i x i + a J ; U i + a ? ) (X / + 0?) 

T A B L E II 

Extrapolation Distance, z0 (mfp) 

c + c' c Czo)^ (*o )p2 

1 . 0 5 0 . 1 0 . 7 2 4 1 4 0 . 7 2 3 9 4 
0 . 3 0 . 8 4 2 2 2 0 . 8 4 1 5 1 
0 . 5 1 . 0 0 5 9 4 1 . 0 0 4 5 6 
0 . 7 1 . 2 4 8 1 5 1 . 2 4 5 8 0 
0 . 9 1 . 6 4 3 2 2 1 . 6 3 9 2 8 

1 . 1 0 . 1 0 . 6 9 0 4 2 0 . 6 8 9 8 2 
0 . 3 t 0 . 8 0 0 4 3 0 . 7 9 8 2 6 
0 . 5 0 . 9 5 1 8 1 0 . 9 4 7 3 5 
0 . 7 1 . 1 7 3 3 6 1 . 1 6 5 3 7 
0 . 9 1 . 5 2 8 9 9 1 . 5 1 4 9 8 

1 . 2 0 . 1 0 . 6 3 1 3 9 0 . 6 3 0 1 3 
0 . 3 0 . 7 2 7 1 9 0 . 7 2 2 5 2 
0 . 5 0 . 8 5 7 4 7 0 . 8 4 7 5 3 
0 . 7 1 . 0 4 5 1 8 1 . 0 2 6 7 4 
0 . 9 1 . 3 4 0 0 0 1 . 3 0 6 7 3 

1 . 3 0 . 1 0 . 5 8 1 4 6 0 . 5 7 9 7 4 
0 . 3 0 . 6 6 5 2 4 0 . 6 5 8 7 2 
0 . 5 0 . 7 7 8 1 1 0 . 7 6 3 9 5 
0 . 7 0 . 9 3 8 8 9 0 . 9 1 2 0 4 
0 . 9 1 . 1 8 7 8 3 a 

1 . 4 0 . 1 0 . 5 3 8 7 3 0 . 5 3 6 7 0 
0 . 3 0 . 6 1 2 3 2 0 . 6 0 4 5 2 
0 . 5 0 . 7 1 0 6 1 0 . 6 9 3 4 9 
0 . 7 0 . 8 4 9 2 8 0 . 8 1 6 3 5 
0 . 9 1 . 0 6 1 6 1 a 

X / f v ' , + Lt* + £ , frV J x 
l + ^ s i n w f L / (A,- + a) +oo J 

A cos w t _ e x p ( - a t ) 

1 + A s i n u t no ( 1 + ^ 4 s i n a ) t) 

v f x , j g * C , 0 /3, X» A A13, X, u) 1 

iV »o ' a + \t + (X, +a)2 + u;zJ * 

aNot calculable by present exact p rog ram due to the 
appearance of a second discrete eigenvalue. 

x exp (-at - Xj t) 
l + ^ 4 s i n c o / ' 




