Letters to the Editor

Comments on "Helium Production in Stainless Steel"

In a recent Note, Goel¹ makes the following comments and observations on my earlier publication.² His comments on my earlier paper are as follows:

- 1. I had pointed out the uncertainty in the data for the ⁵⁹Ni(n, α) process derived from the helium production measurements.
- 2. The differences between the values for thermal ${}^{59}\text{Ni}(n,\alpha){}^{56}\text{Fe}$ cross sections derived by me² and by Bauer and Kangilaski³ can be due to differences in the starting values.
- 3. The reasons for my selection of a particular experimental point of Weitman et al.⁴ and for my neglect of the data of Bauer and Kangilaski³ are not evident from my paper.

The purpose of this Letter is to complete the above criticism of Goel. i

Both comments 1 and 2 stated above are correct. Regarding the third comment, I may mention here that I had felt that the experimental data of Bauer and Kangilaski could be in large error. This is confirmed by the presently¹ accepted value of $\sigma_2 = 12.5 \pm 1$ b, which is higher than that deduced in Ref. 3.

One interesting point that deserves mention regards the few related equations that Goel has explicitly avoided in his Note.¹

Following the same notations as used in my earlier paper,² the correct expression (valid for both low and high fluences) for the two-step reaction is [Eq. (12) of Ref. 2]

$$N_{\rm He}(t) = {}^{58}\rm{Ni}(0) \left[\frac{\sigma_1 \exp(-\sigma_2 \phi t) - \sigma_2 \exp(-\sigma_1 \phi t)}{\sigma_2 - \sigma_1} + 1 \right] \quad . \quad (1)$$

The corresponding expression given in Ref. 3 is

$$N_{\rm He}(t) = \sigma_1 \sigma_2^{58} {\rm Ni}(0) \phi^2 \left[\frac{t}{\phi \sigma_2} + \frac{\exp(-\phi \sigma_2 t) - 1}{(\phi \sigma_2)^2} \right] \quad . \tag{2}$$

The final equation used for fitting the helium production data at low fluences ($\sim 10^{21} \text{ n/cm}^2$) as used in Ref. 3 is

$$N_{\rm He}(t) = \frac{1}{2} \,\sigma_1 \sigma_2 \,{}^{58} {\rm Ni}(0) \cdot (\phi t)^2 \quad . \tag{3}$$

It is a trivial mathematical exercise to show that both Eqs. (1) and (2) reduce to Eq. (3) at low fluences. Equations (1), (2), and (3) give numerical values of $N_{\rm He}(t)$ within 0.5% at low fluences (~10²¹ n/cm²). However, use of Eq. (2) or (3) leads to larger errors at higher fluences, and beyond some value of the fluence, they even become physically unacceptable, i.e., $N_{\rm He}(t)$ becomes greater than ⁵⁸Ni(0), which is not physically possible.

May I add that since the revised evaluation of σ_2 given by Goel¹ is 12.5 ± 1 b, the expression given in my paper² [Eq. (13) in Ref. 2] for the number of atoms of helium per gram of natural nickel corresponding to a thermal fluence ϕt also becomes modified accordingly, as a numerical value of $\sigma_2 = 13.62$ b was used in my paper to obtain that expression [Eq. (13) of Ref. 2].

S. Ganesan

Reactor Research Centre Kalpakkam 603 102 Tamil Nadu, India

May 25, 1979

Remarks on "Comments on 'Helium Production in Stainless Steel'"

The earlier publication of Ganesan¹ was to explain the "fallacy in the evaluation" by Bauer and Kangilaski,² and it creates the impression that the low value for the thermal ⁵⁹Ni(n,α)⁵⁶Fe cross section given by Bauer and Kangilaski is due to approximations used by them. However, it turns out that the approximations used by them are quite good³ and the higher value of Ganesan is not due to the use of "correct" equations but due to a different data base.

In fact, the equation of Ganesan [Eq. (1) of Ref. 4] is itself an approximation. It does not account for the removal of ⁵⁸Ni or ⁵⁹Ni by processes other than those directly involved in the ⁵⁸Ni $(n,\gamma)^{59}$ Ni $(n,\alpha)^{56}$ Fe process. A rigorous equation has been given by Birss and Ellis⁵ as

$$N_{\rm He}(t) = {}^{58}{\rm Ni}(0)\sigma_1\sigma_2 \left[\frac{\exp(-\sigma_2^R\phi t)}{(\sigma_2^R - \sigma_1^R)\sigma_2^R} - \frac{\exp(-\sigma_1^R\phi t)}{(\sigma_2^R - \sigma_1^R)\sigma_1^R} + \frac{1}{\sigma_1^R \cdot \sigma_2^R} \right] ,$$

¹S. GANESAN, J. Nucl. Mater., 62, 329 (1976).

²A. A. BAUER and M. KANGILASKI, J. Nucl. Mater., **42**, 91 (1972).

³B. GOEL, Nucl. Sci. Eng., **69**, 99 (1979).

⁴S. GANESAN, Nucl. Sci. Eng., 72, 121 (1979).

¹B. GOEL, Nucl. Sci. Eng., 69, 99 (1979).

²S. GANESAN, J. Nucl. Mater., 62, 329 (1976).

³A. A. BAUER and M. KANGILASKI, J. Nucl. Mater., **42**, 91 (1972).

⁴J. WEITMAN, N. DÅVERHÖG, and S. FARVOLDEN, *Trans. Am. Nucl. Soc.*, **13**, 557 (1970).

⁵I. R. BIRSS and W. E. ELLIS, Proc. Br. Nucl. Soc. Conf. Voids Formed by Irradiation of Reactor Materials, p. 339, Reading University, March 24-25, 1971, British Nuclear Energy Society (1971).