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Letters to the Editor 

Comments on Two Papers on the Nonlinear 
Diffusion Equation 

In two recent papers on the solution of the one-group 
nonlinear space-dependent diffusion equation for the neu-
tron flux, 

dx2 + B <b - a £d>(x,T)dT , ( 1 ) DV dt ' 

Scalettar1 and Garabedian and Lynch2 used a modal expan-
sion with essentially the same approximation scheme to 
deal with the nonlinearity. It is shown that this approxima-
tion is equivalent to a perturbation theory treatment and, 
therefore, that it is valid only for mild excursions. For 
large excursions, the modal expansion series used di-
verges from the exact solution. 

In Eq. (1), B2 is the homogeneous material buckling 
after the step increase in the infinite multiplication con-
stant producing the excursion, the expression in the square 
brackets is the energy release, and a is a constant 
feedback coefficient. When the flux is expanded in the form 

0M = E Tu(t)<f>v(x) , V = 1 
where (f)u are the symmetric eigenfunctions of the Helmholtz 
equation for the slab, i.e., 

(2v - 1) 2 R v = 1,2, 3 (f)v(x) = cos Bvx , 

Eq. (1) becomes: 

E [" 4>v(x)±v(t) + CB2 -

= Ya TJ <MVE tk f»Tk(T)dT (2) 

Scalettar and Garabedian and Lynch now approximate 
the nonlinear term in Eq. (2) as follows: 

£ v = l 
j^^Tv * ya<$>\(x)Ti{t) £ Ti(r)dT . 

(3) 
Multiplying Eq. (3) by </>„ and integrating over the slab, the 
following system of ordinary differential equations is 
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obtained for the functions Tv{t)\ 

v = 1 - ^ TI + (B2 - B\) Ti = yaBl1 TX £ T^dr 

1 
(4) 

v>l 

where 

Dv {B2 - B2
V) Tv = yaBl1 TI £ Tidr 

r11- 1 ( -1 ) ^ 7 1 2 1 \ 

To check the approximation (3), the spatial distribution of 
the energy release in the excursion is now calculated from 
Eq. (4) and compared with the exact numerical solution of 
the problem.3 Following Ergen,4 we integrate Eq. (4) over 
all time, noting that, by definition, 

E(x,t) = y fj(x,T)dT = *Ax) f*Tv(T)dT 
v 

= E £„(*) <M*) . (5) 
V 

Also, at the end of the excursion the flux is zero every-
where,3 i.e., 

TuM = 0 , (6) 
while at the start the flux is given by the fundamental mode 
only2 

TI(0)=A 7V(0) = 0 . (7) 

The integration of the left-hand side of system (4) is 
obvious using Eqs. (5), (6), and (7). The nonlinear term 
gives 

(8) 

having used the definition (5). For simplicity, we neglect 
the inhomogeneous term arising from the integration of the 
left-hand side of the f irst equation of Eq. (4); this is 
equivalent to assuming a negligibly small initial flux level 
[i.e., in Eq. (7), A ~ 0]. Finally, we obtain in closed form 
the modal coefficients for the energy distribution at the end 
of the excursion: 

b i 2 pv 
(9) 
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TABLE I 

Few-Mode Approximation [Eq. (9)] vs Point Kinetics and Exact Solution 

Maximum Energy Density at Slab Center 
(Arbitrary Units) 

Point Kinetics 
Reactivity Perturbation3 (One-Mode Two-Mode Three-Mode Four-Mode Five-Mode 

B2/B\ Exact Approx.) Approx. Approx. Approx. Approx. 

1.2 0.235 0.236 0.234 0.234 0.234 0.234 
2 1.162 1.178 1.144 1.146 1.146 1.146 
3 2.297 2.356 2.199 2.205 2.204 2.204 
4 3.408 3.534 3.111 3.125 3.123 3.123 
7 6.640 7.069 2.832 2.897 2.887 2.889 
8 7.693 8.247 -3.295 -3.200 -3.214 -3.211 

10 9.774 10.603 29.681 29.861 29.839 29.843 
aThe normalized slab thickness is 7r, so that the critical buckling is B\ =1. Note that, Eq. (9a), for a step 

increase in the material buckling B2/ B2 > 9, not only the fundamental mode but also the first harmonic is 
excited with a positive reactivity. Therefore, the last excursion in the table is extremely violent. 

bFor simplicity in Eqs. (9), we took (a/2) = 1, where 01 has units of energy -1 times length"1. 

The reactivities and temperature coefficients are given by 

pv= M2(B2 - Bl) , bll= M2aBl
v
1 , (9a) 

where M2 is the migration area and B is the slab half-
thickness. The first equation of Eq. (9) is the classic 
Fuchs-Nordheim result, and the Ev

9s are the higher mode 
contributions to the final energy distribution in the sense of 
Eq. (5) and the approximation (3). 

In Table I, the results obtained from point kinetics 
(fundamental mode only) and a few mode calculations are 
shown together with the exact values.3 It is seen that the 
approximation (3) gives a fairly good result for the 
relatively mild excursions where B2/B\ < 4 (ratio of 
perturbed buckling to critical buckling of the homogeneous 
reactor). In the limit of B 2 / B \ ^ 1, the approximation is 
entirely satisfactory and so is point kinetics also. How-
ever, for the more severe excursions, the higher mode 
approximations lead to poorer results than those obtained 
with the fundamental mode only. The reason is as follows. 
If for any given time, the flux is written symbolically as 

cj>(x,t) =A<t>1{x) + A<h(*,f) , (10) 

where 0i(*) is the fundamental mode shape and A0i the 
deviation from it, one has 

[4>(x,t)f = A V i + 2Acfy1A^1 + Acfc . (11) 

Therefore, if at all times the condition 

A<f>i(*,*) «A(f>i(x) (12) 

is satisfied everywhere, then the approximation of the 
nonlinear terms in Eq. (2) by Eq. (3) will be valid. Table I 
shows clearly that, for the more violent excursions, sig-
nificant changes in the flux shape take place and, therefore, 
Eq. (12) is not satisfied. In conclusion, the approximation 
of the nonlinear terms in Eq. (2) by Eq. (3) is equivalent to 
a perturbation theory treatment and is, therefore, valid 
only for relatively mild excursions. For the more violent 
excursions and for a given number of terms in the modal 
expansion, the nonlinear term in Eq. (2) must be treated 
rigorously as was shown in Ref. 3. 

Jose Canosa 

IBM Scientific Center 
Palo Alto, California 94304 

October 3, 1967 

Concerning Comments on Two Papers on the 
Nonlinear Diffusion Equation 

The iteration scheme claimed by Canosa1 [his Eq. (3)] to 
have been used by Garabedian and Lynch2 was in fact not 
the scheme they used. Their iteration scheme is clearly 
displayed in their Eq. (50) and specific instances of it are 
displayed in their next seven equations. Canosa1 discusses 
only the first step [Eq.1 (4), Eq.2 (54)] of the iteration 
scheme used by Garabedian and Lynch. His conclusions, 
therefore, must be limited to this f irst step. By an an-
alysis of only the first step, he has not (as claimed in 
paragraph one1) shown that Garabedian and Lynch's treat-
ment of the nonlinear term is equivalent to a perturbation 
theory treatment because he does not discuss the com-
plete iteration scheme. 

Because Canosa treats only the first step in the itera-
tion, I interpret his main point to be: The larger B2/B\ is, 
the larger is the difference between the solution of the 
differential equation and the estimate of it as given by the 
\ first iterate. This is, of course, obvious. 

On the other hand, the claim in Canosa's last sentence 
in paragraph one,1 when applied to the complete iteration 
scheme is not at all obvious and it should be substantiated 
with proof (if it is in fact true). If Canosa cannot supply 
proof, he should at least state plausible reasons for his 
conjecture and also clearly label it as a conjecture. (Con-
versely, Garabedian and Lynch2 do not supply proof that 
their scheme converges.) 

An analysis of the iteration scheme used by Garabedian 
and Lynch which demonstrates convergence (or divergence) 
would be worthy of publication. We now supply a first step 
toward this and show that the ser ies representation of the 
first iterate converges. We use the notation of Garabedian 
and Lynch.2 

Consider 

0 a > U , f ) = ^vTil){t) cos(Bvx) , Bv = (2i/ - 1) n/2L , (1) 

where 
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