the D₂O: ejected thoria redeposits on the surface of the particles, trapping many of the fission products that had absorbed on the surface 4) Our irradiated slurry had an overpressure of oxygen, contained a palladium catalyst, and was in other ways different from the slurry used by Gardner. However, our slurry is more representative of that expected from an aqueous homogeneous reactor.

To date no method for leaching of fission products from irradiated thoria or urania slurry has been found which does not completely change the properties of the slurry solids or dissolve a prohibitive fraction of the oxide.

Robert H. Rainey

Oak Ridge National Laboratory Oak Ridge, Tennessee

> Received April 11, 1963 Revised October 7, 1963

Comment on Doppler Broadened Absorption

Since the paper "Accurate Doppler Broadened Absorption" was printed in the June 1963 issue of Nuclear Science and Engineering, Dr. Joseph J. Devaney of the Los Alamos Scientific Laboratory has written to us about his extensive earlier work²⁻⁸ on this subject. Using essentially the same expression for the Doppler broadening as Eq. (7) of the above paper, Devaney and his collaborators have applied a coded digital computation to U²³⁸, Th, Pu²³⁹, Pu²⁴⁰, Mo, Hf, W.

We regret our oversight in not having given

¹G. W. HINMAN, G. F. KUNCIR, J. B. SAMPSON, and G. B. WEST, Nucl. Sci. Eng. 16, 202 (1963).

²J. DEVANEY, M. GOLDSTEIN, and B. FAGAN, "Pu²³⁹ Cross Sections and Their Temperature Dependence," LA-2127, Los Alamos Scientific Laboratory (1957).

³J. J. DEVANEY and B. G. FAGAN, U²³⁸ Cross Sections and Their Temperature Dependence," LA-2144, Alamos Scientific Laboratory (1958).

⁴J. J. DEVANEY, M. A. DEVANEY, and D. COWARD, "Tungsten Cross Sections and Their Temperature Dependence," LA-2289 Los Alamos Scientific Laboratory (1959).

- ⁵J. J. DEVANEY, D. COWARD, and R. E. ANDERSON, "Molybdenum Cross Sections and Their Temperature Dependence," LA-2373, Los Alamos Scientific Laboratory
- ⁶J. J. DEVANEY, L. O. BORDWELL, and R. E. ANDER-SON, "Thorium Cross Sections and Their Temperature Dependence," LA-2525, Los Alamos Scientific Laboratory
- ⁷J. J. DEVANEY and L. BORDWELL, "Plutonium 240 Cross Sections and Their Temperature Dependence," LA-2574, Los Alamos Scientific Laboratory (1961).
- ⁸J. J. DEVANEY, L. O. BORDWELL, and M. J. DEVAN-EY, "Hafnium Cross Sections and Their Temperature Dependence," LA-2763, Los Alamos Scientific Laboratory (1962).

credit to this very useful work. On the other hand, these reports have not compared the accurate treatment with the more approximate ψ -function method, and, in this sense, our work can be considered to supplement his.

> John B. Sampson George W. Hinman

General Atomic Division of General Dynamics Corporation San Diego, California

Received July 22, 1963

Effect of Neutron Spectrum on the Branching Ratio of the Ni⁵⁸ (n,p) Co⁵⁸ Reaction

The effect of branching ratio on the thermal neutron absorption corrections for nickel activation measurements has been discussed fully by Martin and Clare¹. These authors show that an error of ±10% in the branching ratio can produce an error of ±5% in measured fast-neutron doses using nickel activation monitors in a thermal neutron flux of $\sim 10^{14}$ n.cm⁻² sec.⁻¹ and that the error is greater in higher thermal-neutron fluxes. It is, therefore, important to know the effect of neutronspectrum variation on the branching ratio if nickel is to be used as an accurate fast-neutron dose monitor in different reactor facilities.

The mean branching ratio \bar{k} for a given neutron spectrum is defined by Martin and Clare in terms of the mean neutron activation cross-section of the $\operatorname{Ni}^{58}(n,p)$ reaction, $\overline{\sigma}_a$. The product \overline{k} $\overline{\sigma}_a$ is the cross section for activation of Ni58 to the ground state Co^{58} , and $(1 - \overline{k}) \ \overline{\sigma}_a$ is the cross section for activation of Ni^{58} to the isomeric state Co^{58} . Barry² measured the activation cross-section for the Ni^{58} (n,p) reaction as a function of neutron energy E, and obtained a value of $\bar{\sigma}_a = (111 \pm 12)mb$ by averaging the results over a 'fission spectrum'. This result is in good agreement with the value obtained by Wright (private communication) of 107 mb relative to 65 mb for the $S^{32}(n,p)$ reaction by comparison of nickel and sulphur monitors in a hollow fuel element in PLUTO.

Cross³ has determined the branching ratio as a

¹W. H. MARTIN and D. M. CLARE, Determination of fast neutron dose by nickel activation. Nucl. Sci. Eng., this

²J. F. BARRY, The cross-section of the Ni⁵⁸ (n,p) Co⁵⁸ reaction for neutrons in the energy range 1.6 to 14.7 MeV. Reactor Sci. & Technology, Vol. 16, pp. 467-472 (1962).

 $^{^3}$ W. G. CROSS, Isomeric ratios in the reactions Ni 58 (n,p) Co 58 and Co 59 (n,2n) Co 58 . Bull. Amer. Phys. Soc. II, 8, No. 4 p. 368 (1963).