

and

$$\nabla \phi_R = \nabla \phi_{0R} + O(\epsilon_M) \qquad \text{in } \frac{1}{2} + \epsilon_V \le z \le 1 \quad . \tag{9}$$

Hence, if the interface shift perturbation is treated as a material perturbation, then, as justified by our Eq. (8) and in fact demanded by the rigorous derivation of the classical first-order perturbation formula, $\nabla \phi$ should be replaced by $\nabla \phi_{0R}$ in the integral over the perturbed volume. If this is done, the exact Eq. (15) of Ref. 1 will reduce to the classic first-order perturbation formula, Eq. (6) of Ref. 1, which will give results correct to the first order in ϵ_M .

Parenthetically, we remark that the requirement of current continuity across the interface causes a discontinuity in V ϕ_0 at $z = \frac{1}{2}$. However, we see that

$$\nabla \phi_{0R} \left(z = \frac{1}{2} \right) = \frac{D_L}{D_R} \nabla \phi_{0L} \left(z = \frac{1}{2} \right) = \left(1 + \epsilon_M \frac{\delta D}{D_R} \right) \nabla \phi_{0L} \left(z = \frac{1}{2} \right)$$
$$= \nabla \phi_{0L} \left(z = \frac{1}{2} \right) + O(\epsilon_M) \quad . \tag{10}$$

Thus, this discontinuity is of order ϵ_M only, and this cannot cause any inconsistency in our Eq. (8).

For the corrected perturbation formula, we see from Fig. 1 that, by Taylor series expansion,

$$\nabla \phi_L = \nabla \phi_L \left(z = \frac{1}{2} \right) + O(\epsilon_V) = \nabla \phi_{0L} \left(z = \frac{1}{2} \right) + O(\epsilon_V)$$

in $\frac{1}{2} \le z \le \frac{1}{2} + \epsilon_V$. (11)

Further, as also noted by Rahnema and Pomraning,

$$\nabla \phi_L \neq \nabla \phi_{0R} + O(\epsilon_V) \quad \text{in } \frac{1}{2} \leq z \leq \frac{1}{2} + \epsilon_V$$
 (12)

Thus, in the region of perturbation, $\nabla \phi \equiv \nabla \phi_L$ only approaches $\nabla \phi_{0L}(z = \frac{1}{2})$ and not $\nabla \phi_{0R}(z = \frac{1}{2})$ as $\epsilon_V \to 0$. If the interface shift perturbation is treated as a volume perturbation (of order ϵ_V), then the exact Eq. (15) of Ref. 1 should be converted to a surface integral over the unperturbed surface and $\nabla \phi$ replaced by $\nabla \phi_{0L}(z=\frac{1}{2})$ to get the corrected perturba-tion formula, Eq. (17) of Ref. 1, which will give results correct to the first order in ϵ_V .

> J. V. Muralidhar Rao S. M. Lee

Reactor Research Centre Kalpakkam - 603 102 Tamilnadu, India

November 29, 1982

Reply to "On the Use of First-Order **Perturbation Theory in Interface** Shift Problems"

Rao and Lee¹ seem to have attributed more to our Note² than we intended. We did not, as these authors seem to imply, claim that the classic derivation of the standard first-order perturbation formula is incorrect. Indeed, the traditional derivation, equation, and interpretation of classic first-order perturbation theory are all entirely correct if the perturbed problem differs from the unperturbed one by order ϵ_M (presumed to be small). Our only purpose was to point out that this classic result is, in fact, limited to perturbations of order ϵ_M . More specifically, the classical first-order perturbation formula will not correctly treat the case of a slight internal interface shift, characterized as an order ϵ_V perturbation. This is so in spite of the fact that ϕ_0 and ϕ differ by a small amount, of order ϵ_V , for this class of problems.

It appears that all of the arguments and the analysis of Rao and Lee¹ do no more than repeat the arguments we have made,² in a somewhat different (and to us, more confusing) language. It might also be useful in this interchange to point out that a quite general perturbation formula, correct to first order in both ϵ_M and ϵ_V , has recently been obtained.³ This new formula reduces to the classical first-order perturbation formula for perturbations of order ϵ_M to Eq. (17) of Ref. 2 for the order ϵ_V interface shift problem and, in general, correctly treats an arbitrary perturbation in first order, which alters the scalar flux and current by an order ϵ amount.

G. C. Pomraning

F. Rahnema

University of California Berkeley, California 94720

General Electric Company San Jose, California 95125 January 1, 1983

³G. C. POMRANING, Nucl. Sci. Eng., **83**, 72 (1983).

¹J. V. MURALIDHAR RAO and S. M. LEE, Nucl. Sci. Eng., 84, 72 (1983). ²F. RAHNEMA and G. C. POMRANING, Nucl. Sci. Eng., 78, 393

^{(1981).}