LETTERS TO THE EDITOR

COMMENTS ON “EVALUATION OF VOLATILE
AND GASEOUS FISSION PRODUCT BEHAVIOR
IN WATER REACTOR FUEL UNDER NORMAL
AND SEVERE CORE ACCIDENT CONDITIONS”

In the paper by Rest, the words “diffusion” and “diffusion coefficient” are used to evaluate the behavior of noble gas bubbles, iodine, cesium, CsI, etc., in irradiated nuclear fuel.

Since formation of compounds and gas bubbles implies precipitation from super-saturated solutions, and since precipitates of gas bubbles and molybdenum-ruthenium “ingots” and cesium iodide have been identified in or on irradiated UO$_2$, it is clear that irradiated UO$_2$ is multi-phase. The thermodynamic principles associated with the phase rule tell us that there are negligible macroscopic chemical activity gradients associated with the elements in multiphase systems at equilibrium. Since diffusion is usually driven by activity gradients, it appears that the author may not have selected a physically realistic mechanism for the migration of fission product precipitates within and out of UO$_2$ at temperatures above 1500 K.

Let’s get our homework done without requiring another Three Mile Island Unit 2 (TMI-2). It may be helpful to estimate the quantities and, hence, provide an indication of the maximum possible concentration gradients of 131I and 133Xe in a typical power reactor core at full power. About 20 millimicrograms (nanograms) of each of these radioactive fission products were present in the entire TMI-2 core at the time of the accident. About 10% of the 133Xe was released from the containment and ~40% of the 131I was released to the coolant. The model presented is not consistent with these data at any temperature. It predicts just the opposite behavior of these isotopes.

Radioisotopes are frequently employed as “tracers” in “carrier” media in which they may be moved about, not by diffusion, but by gravitational forces, convection, or mechanical forces that move the carrier. Perhaps our understanding of fission product transport in and out of UO$_2$ needs to be reoriented along these lines.

Walston Chubb

3450 MacArthur Drive
Murrysville, Pennsylvania 15668
March 17, 1983

REFERENCES

REPLY TO “COMMENTS ON ‘EVALUATION OF VOLATILE AND GASEOUS FISSION PRODUCT BEHAVIOR IN WATER REACTOR FUEL UNDER NORMAL AND SEVERE CORE ACCIDENT CONDITIONS’”

Chubb’s contention that fission product transport in solid UO$_2$ fuel is controlled “by gravitational forces, convection, or mechanical forces” and “not by diffusion” is counter to observation and theory. Chubb is mistaken about the fundamental processes of fission product transport in solid UO$_2$ fuel. Clearly, gravitational forces are much too weak to affect the migration of precipitates through a solid crystal lattice. Convection applies to the transfer of a liquid or gas and not to the migration of precipitates in a solid. If by mechanical forces Chubb is referring to the effect of stress gradients on precipitate motion, then these effects have been considered in the development of FASTGRASS: Stress gradient effects were found to be much weaker than temperature gradient related processes. Chubb’s hypothesis that diffusion is not “a physically realistic mechanism for the migration of fission product precipitates within UO$_2$” because “there are negligible macroscopic chemical activity gradients associated