LETTERS TO THE EDITOR

BREEDING RATIO FOR FAST REACTORS

Dear Sir:

At the last American Nuclear Society Winter Meeting "An Improved Definition of the Breeding Ratio for Fast Reactors" was suggested by K. O. Ott. The general definition of the breeding ratio is

\[\text{BR} = \frac{\sum \gamma_i C_i - 1}{\sum \gamma_i A_i} \]

where \(i \) is a suffix that can take the values 5, 6, 8, 9, 0, 1, and 2 representing \(^{235}\text{U}, ^{236}\text{U}, ^{238}\text{U}, ^{239}\text{Pu}, ^{240}\text{Pu}, ^{241}\text{Pu}, \) and \(^{242}\text{Pu} \), respectively; \(C_i, A_i, \) and \(F_i \) [in Eq. (4)] denote, respectively, the capture, absorption, and fission rate for isotope \(i \) integrated over the whole reactor; and the \(\gamma_i \) are weighting factors. The improved weighting factors suggested in Ref. 1 are

\[\gamma_i = \frac{\eta_i}{\eta_0} \quad \text{with} \quad \eta_i = \frac{\nu_i \sigma_{i_i}}{\sigma_{ai}} \]

From these definitions it is possible to find the reactor breeding gain

\[G_\eta = \text{BR} - 1 = \frac{\sum \gamma_i (C_i - 1) - A_i}{\sum \gamma_i A_i} \]

Let us write the denominator of Eq. (3) as follows:

\[\sum \gamma_i A_i = \sum \frac{1}{\eta_0} \frac{\nu_i \sigma_{i_i}}{\sigma_{ai}} A_i = \sum \frac{\nu_i}{\eta_0} F_i \]

where

\[\left\langle \frac{\nu}{\eta_0} \right\rangle = \frac{\sum \nu_i}{\sum F_i} \]

From Eqs. (3) and (4), one gets

\[\begin{cases} G_\eta = \frac{\sum \gamma_i (C_i - 1) - A_i}{\sum F_i} \\ g_i = \frac{\gamma_i}{\left\langle \frac{\nu}{\eta_0} \right\rangle} \end{cases} \]

Now let us turn to the so-called British definition\(^2\) of the breeding gain

\[\begin{align*} G_{\text{UK}} &= \frac{\sum w_i (C_i - 1) - A_i}{\sum F_i} \quad \text{with} \quad w_i = \left(\nu \sigma_i - \sigma_i \right) \left(\nu \sigma_i - \sigma_d \right) \\
&= \frac{\sum (\nu \sigma_i - \sigma_d) A_i}{\sum F_i} \end{align*} \]

For a typical fast reactor spectrum, one has

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(^{235}\text{Pu})</th>
<th>(^{236}\text{Pu})</th>
<th>(^{239}\text{Pu})</th>
<th>(^{241}\text{Pu})</th>
<th>(^{242}\text{Pu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_i)</td>
<td>1.0</td>
<td>0.08</td>
<td>1.50</td>
<td>0.10</td>
<td>0.42</td>
</tr>
<tr>
<td>(g_i)</td>
<td>0.82</td>
<td>0.38</td>
<td>0.89</td>
<td>0.42</td>
<td>0.52</td>
</tr>
<tr>
<td>(\gamma_i = \frac{g_i}{\gamma_0})</td>
<td>1.0</td>
<td>0.46</td>
<td>1.09</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

Clearly the breeding ratio will be less sensitive to the plutonium isotopic composition with the weighting factors \(g_i \) than with \(w_i \).

As stated by Ott, if the breeding gain was insensitive with respect to changes in the plutonium composition it is true that it would allow a good estimate of the equilibrium breeding gain and doubling time using only static reactor calculations. But unfortunately it is not insensitive, and there is no apparent physical ground to define the weighting factors as in Eq. (2).

As a matter of fact, the \(w_i \) are the relative reactivity worths of the different isotopes, and extensive fast reactor physics calculations have shown that the critical mass for a given reactor is practically constant when expressed in equivalent \(^{235}\text{Pu} \).

The British definition of the breeding gain [Eq. (7)] is precisely the one that should be used to calculate the reactor doubling time. Indeed, the standard definition of the doubling time of a given reactor is the time needed to build up an amount of fuel material sufficient to make another similar reactor critical.

Such a definition of the doubling time cannot be readily derived from the definition of the breeding ratio given by Eq. (6).

For instance, if a fast breeder reactor is supposed to utilize plutonium with a very high \(^{238}\text{Pu} \) content, it can be seen from Fig. 1 of Ref. 1 that

\[\text{BG}_\eta = 0.225 \quad \text{and} \quad \text{BG}_{\text{UK}} = 0.10 \]

The doubling time derived from \(\text{BG}_\eta \) will then be, in...
this case, less than half that found with BGUK. This shows the importance of a consistent definition of the breeding gain.

Of course, using Eq. (7), one must be careful and use the best average equilibrium fuel composition.

If the composition of reloaded fuel varies sharply with time, one should use

\[
\langle \text{BGUK} \rangle = \frac{1}{t} \int_{0}^{t} \text{BGUK}(t) \, dt \tag{8}
\]

to compute the doubling time.

Concerning the definition of the doubling time, one can state more precisely that to start up a reactor one needs an initial fuel mass which is more than critical, to compensate for the loss of reactivity during burnup. Since this loss of reactivity depends strongly on the fuel isotopic composition it is possible to calculate adequately the corresponding weighting factors \(\nu_i \) as was shown in Ref. 4. But there is then no simple definition of the weighting functions \(\nu_i \) as in Eq. (7), since they include not only the physical properties of an isotope but also those of all its daughter isotopes (produced during irradiation), and some economic factors too.

One might also define an “economic doubling time” as the time needed to build up an amount of heavy isotopes the sale value of which is equal to the purchase cost of a more than critical mass sufficient to start up a similar reactor.

The weighting coefficients would then be

\[
(\nu_i)_{\text{ecov}} = \frac{P_i}{P_0},
\]

where \(P_i \) is the price for isotope \(i \). Such prices \(P_i \) depend on the evolution of the world market and not on the kind of reactor we are considering. However, the practical interest of such a definition is questionable as, presently, most of such prices are not fixed.

P. Goldschmidt
Belgonucléaire
35 Rue des Colonies
Bruxelles 1000, Belgium
March 18, 1970

REFERENCES