In summation, this book has something of value for a broad scientific readership. I hope the editor will be able to maintain, in succeeding volumes, the high standard and broad scope he has already established.

E. Alfred Burrill is Vice-President (since 1957) and Director of Marketing (since 1960) of High Voltage Engineering Corporation, Burlington, Mass., with which he has been affiliated since 1947. Since 1939, he has been involved in the design and development of Van de Graaff accelerators and their applications in research, medicine, and industry. A member of several scientific societies and various technical committees, including the USAEC Advisory Committee on Isotope and Radiation Development, he is Vice-Chairman of the American Nuclear Society Isotope and Radiation Division and a member of the Editorial Advisory Board of Nuclear Applications. His BS degree (in physics) was won from Massachusetts Institute of Technology in 1943.
The first comment which comes to mind, immediately after reviewing the Table of Contents, involves the question, "Why was the book published?" The book offers no new information; each chapter appears exactly as originally published, and no additional references or updating of technical material are provided. The only feature provided by the book is the convenience of finding six related technical articles in a neatly packaged form. It is acknowledged that the availability of this book provides graduate students with needed source material for a particular course. However, it is difficult for this reviewer to accept completely this justification for republication of this material.

The first four papers provide a clearly written introduction to the general subject of stress-rupture testing. This material would be of interest to the engineer who is planning to initiate stress-rupture testing or use available stress-rupture data for design purposes. The last two papers are review articles that summarize the state of knowledge of creep and fracture (as of 1956) and high-temperature grain-boundary behavior (as of 1961). These articles represent significant attempts at organizing large amounts of information into concise technical statements and, as such, are of value to the metallurgist or solid-state physicist attempting to provide further contributions to the field of high-temperature deformation of metals. However, the review articles do not reflect new information currently available on this subject. A recent publication (1965) of the MacMillan Series in Material Science by Frank Garofalo entitled, *Fundamentals of Creep and Creep-Rupture in Metals*, provides one of the most complete and up-to-date treatments of both the phenomenological and micro-mechanistic approaches to a contemporary understanding of creep behavior.

BOOK ANNOUNCEMENTS

Although the following books will not be reviewed, they may be of interest to some of our readers:

Technical Thermodynamics, V. V. Sushkov, Gordon and Breach, 1965, 400 pp, $12.50

An Introduction to the Theory of Superfluidity, I. M. Khalatnikov, Benjamin, 1965, 206 pp, $9.00 cloth, $4.95 paperback

Ultraviolet Radiation, Lewis Koller, Wiley, 1965, 312 pp, $12.00

Alvin Boltax is Manager of Fuel Development at Westinghouse Astronuclear Laboratory where for the past five years he has been involved in the development of graphite-matrix fuel elements for nuclear rocket applications. He received his BS and ScD degrees from the Massachusetts Institute of Technology in physical metallurgy in 1951 and 1955. Prior to joining Westinghouse, he was Group Leader and Project Manager at Nuclear Metals, Inc., where his work involved fabrication and development of metallic fuel elements and basic research on radiation damage and precipitation-hardening alloys.