

Welcome To RadTown USA

Click to Explore RadTown USA

• Click on any location in RadTown USA and find out about radiation sources or uses at that location.

The Alpha, Beta, Gammas of Nuclear Education March 2nd, 2014

Debra N Thrall, PhD Executive Director Albert I Pierce Foundation

Radiation Fundamentals

What is radiation?

- Where does it come from?
- How does it interact with matter?
- What is radioactivity?
- What are fission and fusion?
- How are radiation and radioactivity quantified?

Do you think of these "people" when I say RADIATION?

Do you think of these things as well?

- Food
- Space
- Utilities
- Consumer Products
- Medicine

Brief History of the Atom

- 500 BC
- Long time
- 1808 AD
- 1911
- 1913
- 1920's

DemocritusAtom(Romans → Dark Ages)DaltonPlum PuddingRutherfordNucleusBohrOrbitsMany PeopleQuantum Mechanics

Rutherford's Gold Foil Experiment

The Design

1. Bombard positively charged alpha particles into thin gold foil.

2. Use fluorescent screen to detect particles as they exit the gold foil.

3. Use angle of deflection to determine interior of the atom.

So, What is an Atom?

 Atoms are made up of protons, neutrons & electrons

- Protons: + charge p⁺
- Neutrons: no charge
- Electrons: charge

n⁰

Atoms want to have a stable energy level

- This translates to having no net charge
- # protons = # electrons

Mass of an Atom

- Masses
 - Proton: 1.000000 amu
 - Neutron: 1.000000 amu
 - Electron: 0.000549 amu

(Translates to 1.2 lbs/1 ton ~ a kitten on an elephant!)

 The mass of an atom is approximately due to the mass of the protons and neutrons

• Mass atom = number p^+ + number n^0

Atomic Structure of Helium

THE HELIUM ATOM

HELIUM'S SUBATOMIC COMPOSITION

- 2 Protons
- 2 Neutrons
- 2 Electrons

Isotopes – Defined

- Isotopes are elements with different amounts of neutrons
- The number of protons is identical
- They have similar properties
- There are stable and unstable versions of atoms
- They are naturally occurring & man made

Examples of Isotopes

• H-1 Hydrogen 1 proton 0 neutron

• H-2 Deuterium 1 proton 1 neutron

Heavy hydrogen

• H-3 Tritium 1 proton 2 neutrons

More on atomic structure . . .

Atomic Number = Z is the number of protons

Protons have a <u>large</u> <u>mass</u> and a <u>positive</u> <u>charge</u>. The number of protons identifies an element.

Neutrons have a <u>large</u> <u>mass</u> approximately equal to a proton's mass. Neutrons have <u>no</u> <u>charge</u>.

(e-)

n

Electrons have a very <u>small mass</u> and a <u>negative charge</u>. Electrons travel outside the nucleus.

Predict Radioactivity of an Isotope

Stable Isotopes have a specific

ratio of neutrons to protons.

Unstable Isotopes

which are radioactive fall outside the 'stable zone' of neutron to proton ratios.

Figure 2.5 Neutron-to-proton ratios of stable isotopes.

Chart of the Nuclides

17												C128	С129 ⊲20 NS	C130 «Mass	C131 1 10 MS	C132 258 MS	C133 2.511 s	C134 1.5264 S	C135 7577	С136 запала у	C137 2423	С138 3724 м
16											S26 -10 мя	S27 21 мз	S28 125 MS	S29 187 MS	S30 1.178 s	S31 2.572 s	S32 9512	S33 0.75	S34 421	S35 87.38 D	S36 112	S37 505м
15										P24	Р25 <10 NS	Р26 20 мs	Р27 260 мз	Р28 270.3 MS	P29 4142 8	РЗО 2.498 м	P31 100	P32 14262 d	P33 25.34 D	P34 12.43 S	P35 47.3 8	P36 568
14									Si22 29 MS	Si23 >200 NS	Si24 102 MS	Si25 220 MS	Si26 2234 8	Si27 416 8	Si28 92.230	Si29 4 <i>9</i> 35	Si30 3.007	Si31 1973м	Si32 172 y	Si33 6.332 8	Si34 2.77 s	Si35 0.78 s
13									Al21 <35 NS	Al22 \$7 MS	Al23 0.47 s	Al24 2053 S	Al25 7.183 S	Al26 лтш ү	Al27 100	Al28 2 2414 m	Аl29 6.55 м	A130 3£08	A131 644 MS	Al32 33 MS	A133 >1 US	Al34 ED MS
12								Mg19	Mg20 soa ws	Mg21 122 MS	Mg22 3857 8	Mg23 11.317 s	Mg24 78 <i>5</i> 9	Mg25 1000	Мg26 11 m	Mg27 9499 м	Mg28 2051 5 H	Mg29 1.30 s	Mg30 335 MS	Mg31 230 MS	Mg32 120 MS	Mg33 sums
11							Na17	Na18	Na19 «40 NS	Na20 447.9 MS	Na21 22.49 S	Na22 2.5019 Y	Na23 100	Na24 14.9512 H	Na25 \$9.1 s	Na26 1.072 s	Na27 301 MS	Na28 30.5 ms	Na29 44.9 MS	Na30 48 MS	Na31 170 ms	Na32 132 MS
10						Ne15		Ne17 1092 MS	Ne18 1672 MS	Ne19 1722 8	Ne20 50.48	Ne21 027	Ne22 925	Ne23 37 24 8	Ne24 3.38 м	Ne25 em ms	Ne26 0.197 s	Ne27 32 мs	Ne28 17 ms	Ne29 200 MS	Ne30 >200 NS	Ne31 >260 NS
9	9 F14								F17 64.49 s	F18 109.77 м	F19 100	F20 11.163 8	F21 41988	F22 423.8	F23 2238	F24 0.34 S	F25 \$9 MS	F26 150 MS	F27 ×шх	F28 ≪0 №S	F29 >200 xs	
8					_	O13 8.59 MS	О14 то со б 8	O15 122.24 8	O16 99.762	017 000	O18 0200	O19 26.51 s	O20 13.51 8	O21 3.42 S	O22 2258	O23 ez ms	О24 61 жз	О25 <ялыя	O26 ≪40 №S			
7				N10		N12 11 mm xs	N13 9965 m	N14 97634	N15 0.366	N16 7138	N17 4.173 S	N18 624 MS	N19 250 MS	N20 142 MS	N21 87 ms	N22 18 ms	N23 >2011 NS	N24 <52 NS				
6				C9 126.5 MS	C10 19255 8	С11 20.39 м	C12 98.89	C13 111	C14 5730 х	C15 2.449 S	C16 0.747 S	C17 193 MS	C18 95 MS	C19 49 MS	C20 14 ms	C21 ⊲auns	C22 >200 NS					
5			_	B 8 770 мз		B10 198	B11 802	B12 2020 MS	B13 17.36 MS	В 14 12.3 мз	B15 987 жs	B16 ⊲19098	В17 500 мз	В18 ⊲26 №	B19 >200 мз							
4		Be5		Be7 5329 D		Be9 100	Bel0 151000 Y	Be11 1381 8	Be12 21.3 MS		Be14 4.35 MS											
3				Li6 7.59	Li7 92.41	Li8 exe xis	Li9 178.3 MS		Li11 8.5 MS	Li12 aons												
2		He3 onn w	He4 99,999863		He6 ED6.7 X/S		Не8 1190 мз															
1	H1 99,985	H2 0.01.5	H3 12.33 Y																			
0		N1 1024 m																				

Wilhelm Roentgen Discovered the X-ray Nov. 8, 1895

Henri Becquerel Discovered radioactivity 1896

Pierre & Marie Curie Discovered Radium Coined the term, radioactivity Ernest Rutherford Father of Nuclear Physics Named and Categorized: Proton; Alpha, Beta Particle

Albert Einstein

Theory of Relativity led to new ideas about space, time, matter, energy, gravity

Ernest Rutherford Discovered Nuclear Fission 1939

<u>Glenn Seaborg</u> Discovered Plutonium 1941

<u>Enrico Fermi</u>

Produced the first man-made, self-sustaining nuclear chain reaction with his team on Dec. 2, 1942 NM and AZ have a long and diverse past with the nuclear industry.

They are almost synonymous with nuclear and the nuclear industry.

Nuclear research, mining and miling have changed the face of these states completely and irreversibly.

NM is considered to be the birthplace of the atomic bomb.

In 1943 - J. Robert Oppenheimer moved the Manhattan Project to Los Alamos, New Mexico which resulted in the creation of the Los Alamos National Laboratory

Why White Sands, New Mexico?

• "The critical requirement for a site for an atomic bomb design laboratory was enhanced security.

 Such a site needed to be safe from bombing by enemy aircraft and equally safe from curious citizens."

Trinity Test Site July 16th, 1945

Above: Bomb Detonation Top Middle: "The Gadget" Bottom Middle: Trinitite Right: Bomb Drop Tower

August 1945

•Little Boy and Fat Man, dropped on Hiroshima and Nagasaki

 Sandia National Laboratories' forerunner, known as Z Division on Sandia Base established as a site convenient to Los Alamos to continue weapon development. Some members of the public seem to equate anything nuclear with the concept of nuclear weapons.

Mass Paranoia

Mass fear of Nuclear holocaust

•Fall out shelters constructed and bomb drills conducted – DUCK AND COVER!

When Trinity was detonated it was the bang of a starting gun for B-movie makers everywhere!

They saw visions of mutants, plagues, nuclear holocaust, empty cities covered in gray ash; and mushroom clouds rising like dollar signs on the screens of drive-ins everywhere.

Relive the fear and paranoia of America's most dangerous era in one multi-disc Collectors Set.

Return to the era of nuclear brinkmanship and visceral fear that gripped the entire country with this amazing collection of documentaries and public service

features. From atomic testing to fall-out shelters, canned and dried food caches and unintentionally comical safety advice for a nation of terrified Americans, the hysteria of a generation is captured here.

DISC 1

Stay Sale, Stay Strong: The Facts About Nuclear Weapons About Fallout News Magazine of the Screen: The Atomic Energy **Our Oties Must Fight** Town of the Times Operation: Tumbler Snepper Operation: Greenhouse Operation: Plumbbob - Weapons Development Report Project Gnome **Radiological Defense** Atomic Proving Grounds -The Story of Operation: Sandstone Atomic Weapons Tests -Trinity Through Buster-Jangle Fallout: When and How to Protect Yourself

DISC 2 Operation: Crossroads Operation: hy Management of Mass Casualties Special Delivery Tale of Two Cities Bombproof Information Program Within Public Shelters Occupying a Public Shelter Tarpet: You! Warning Red Operation: Hardtack Medic: Flash of Darkness The Atom Strikes!

This is Not a Test Red Chinese Battle Plan The Medical Aspects of Nuclear Radiation Operation: Cue The Atom and Biological Science Atomic Alert The Challenge of Ideas The House in the Middle Sunival Under Atomic Attack What You Should Know About **Biological Warfare** A New Lock at the H-Bomb Duck and Cover Let's Face It You Can Beat the A-Bomb A Day Called X Operation: Castle A is for Atom

DISC 3

Warning: Documentaries contain scenes that may be considered graphic and violent by some viewers.

Over 17 Hours of Color and B&W Documentary Footage www.millcreekent.com

©2008 Mill Creek Entertainment, All Rights Reserved, Made in USA. WAVMING: For private home use only Federal law provides substantial penalties for the unauthorized reproduction, distribution or exhibition of this property.

Where Does Radiation Come From?

Nuclear Decay - Radioactivity Atomic Processes - X-rays Nuclear Reactions Fission **Fusion Others**

Background Radiation Sources

What is Radiation?

Radiation = Energy in transit

... The transfer of energy by waves or particles

 Ionizing Radiation: Has sufficient energy to produce energetic ions in ordinary matter

> ...must result in the production of charged particles and eventual absorption of their kinetic energy

- Alpha and Beta particles, Gamma & X-rays, Neutrons
- Non-Ionizing Radiation: Does not produce energetic ions Radio, Microwaves, UV, IR, Visible

Nuclear Reactions - Fission

Types of Radiation

Non-Ionizing

Radiowaves Microwaves Infrared Ultraviolet Visible Light

lonizing

Alpha Beta Gamma X-Rays Neutrons

Electromagnetic Spectrum

Particles can also be described by a wave function!

Why is it called *ionizing*? Because it creates *ions* -atoms with a charge.

Radiation Types

Alpha (α) 2 protons, 2 neutrons positively charged partic

Beta (β) like an electron negatively charged particle

Gamma (γ) Wave energy (*not* a particle)

Radioactivity: α Decay

Alpha tracks in a cloud chamber

Alpha Radiation (α)

RangeVery Short 1 - 2" in airShieldingPaper Outer layer of skinHazardsAlphaternal Outer layer of skin	Characteristics	Particle, Large Mass, +2 Charge	
Shielding Paper Outer layer of skin Hazards Alphatic Sources Plutonium, uranuu	Range	Very Short 1 - 2" in air	
Hazards Alpha (0) Plutonium, urama.	Shielding	Paper Outer layer of skin	
Sources Plutonium, orannen	Hazards	Alpha (0)	A¥
Americium	Sources	Plutonium, orania. Americium	Paper

Uses of Alpha Radiation

- Pacemakers (Older models)
- Airplanes
- Copy Machines
- Smoke Detectors
- Space exploration

Radioactivity: β⁻ Decay

Beta Radiation (β)

Beta Radiation is used in thickness gauging

The thicker the material the less radiation will pass through the material.

Gamma Emission

Gamma Rays (γ) and X-Rays

Characteristics	No electromagnetic mass, no charge	
Range	Hundreds of feet in air	Gamma ray 10 20 50 40 50 40 50 20 10
Shielding	Lead, Steel Concrete	36
Ha cards _{Gamma (Y)} Sources	Externel Source Who y Pen g 60, K \$-137	

Uses for Gamma Radiation:

- Food irradiation
- Sterilization of medical equipment
- Creation of different varieties of flowers

• Inspect bridges, vessel welds and Statue Of Liberty.

RADIOACTIVE DECAY REACTIONS

Radioactive Half-life

Half-Life

Half Life

HOW RADIATION AFFECTS YOUR BRAIN

Radiation Interaction and Penetration Through Matter

High charge, dense ionization, short path

o beta

Less charge than alpha, longer, erratic path

-vvv gamma

No charge or mass, much less interaction

No charge, interacts by nuclear scattering

Cell Damage

Direct vs. Indirect Ionization

• Direct

Radiation that ejects orbital electrons from absorber atoms like charged particles (alphas and betas)

Indirect

Transfer energy to charged particles (protons/electrons) of the absorber atoms, like neutrons and gamma rays.

Ionizing radiation induces:

Direct DNA damage

Indirect damage through the radiolysis of water

©2005 by National Academy of Sciences

Sensitivity of Cells

Lymphocytes

Spermatogonia

- Hematopoietic (Blood Forming)
- Intestinal Epithelium
- Skin
- Nerve Cells
- Muscle Tissue
- Bone
- Collagen

MOST SENSITIVE

Radioactive Contamination

 It is not like a spreading contagion (think of a flashlight)

Can be solid, liquid, or gaseous

 In solid form can be thought of as dust or dirt

Radioactive Contamination Types

External

Secondary contamination Primarily skin and wounds Internal Can be difficult to remove Ingestion and Inhalation

Nuclear Decay - Radioactivity

<u>Radioactivity</u>: The spontaneous transformation ("decay") of unstable nuclei, resulting in a more stable "daughter", accompanied by emission of ionizing radiation

<u>Radioactive Material</u>: A substance that contains unstable atoms, and therefore emits ionizing radiation

<u>Radioisotope (radionuclide)</u>: An unstable, radioactive isotope of an element. Well over 2000 radioisotopes have been identified.
Manure Analogy

Radiation Concept	Manure Analogue	Common Aspect
Radioactive material	Manure	The source of invisible emanations
Radiation	Unpleasant Odor	Invisible emanations
Contamination	Manure tracked into your house	The source where you don't want it and where it's not naturally present
Non-radioactive or stable material	Completely composted manure - no unpleasant odor	Incapable of being a source of emanations
Half life	Time it takes for half of the manure to be converted to compost	Natural decay - given time both lose their potency

Units of Radioactivity

Activity: The quantity of radioactive material decaying per unit time

- Curie (Ci): 3.7x10¹⁰ disintegration per second (dps)
- Becquerel (Bq): 1 dps

Specific Activity: The amount of radioactivity in a given mass or volume - e.g. Ci/liter or Ci/gram

Note: Activity is the number of atoms decaying, not the number of atoms present.

- Radiation = Energy Contamination = Material
- Radioactive contamination emits radiation
- Exposure to radiation will NOT contaminate you

Units for Exposure and Dose

EXPOSURE (X): Generically, exposure is the condition of being exposed. Exposure is also used to quantify the amount of ionization produced by photons as they pass through air. The unit of exposure is the *Roentgen (R)*.

1R = 1 esu/cc in air

Absorbed Dose (D): Absorbed dose is the amount of energy deposited in any material by ionizing radiation. The unit of absorbed dose used in the U.S., the *rad*, is a measure of energy absorbed per gram of material. The S.I. unit is the *Gray (Gy)*. One *Gray* equals 100 *rad*.

1Gy = 1 J/kg in any material

Dose Equivalent (H): A special concept relating absorbed dose to biological detriment. In the U.S. the unit is the *rem*. The S.I. unit is the *Sievert* (Sv). One *Sievert* equals 100 *rem*.

Relative Risk: Equivalencies to 1 mrem

- Crossing a street 5 times
- A few puffs on one cigarette
- Being 0.0007 ounce overweight
- Driving 5 miles
- Getting out of bed every morning for a year
- 3 minutes of living if you are 65 years old
- Using a bathtub for a few months

Radiation Reduction
 Guiding principle: ALARA

 (as low as reasonably achievable)

- •Restrict Proximity TIME
- Increase the DISTANCE from the Source

•Use SHIELDING Material

Human Experience: Ionizing Radiation

Human Experience: Ionizing Radiation

As Gandhi so eloquently put it,

"The enemy is fear. We think it is hate; but, it is fear".

---- QUESTIONS ----

Dr. Debra N Thrall Executive Director Albert I Pierce Foundation 505-883-3114 <u>dthrall@unm.edu</u>

American Nuclear Society

The End . .